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Based on quasi-interpolation, we propose a new meshless conservative or dissipative method for nonlinear time- 

dependent partial differential equations. Using the method of lines, we first discretize the equation in space with 

the quasi-interpolation method, then employ the average vector field method in time discretization to derive the 

final numerical scheme. The method not only inherits the conservation or dissipation property of the equation 

but also has the meshless feature since we use the nonuniform grids in spatial discretization. Several numerical 

examples are presented to demonstrate the effectiveness of the proposed method. 

1. Introduction 

In this paper, we are interested in the numerical approximation to 

the evolutionary partial differential equations of the following form: 

𝜕𝑢 

𝜕𝑡 
=  

𝛿𝐺 

𝛿𝑢 
. (1.1) 

Here 𝑢 = 𝑢 ( 𝑥, 𝑡 ) , ( 𝑥, 𝑡 ) ∈ ℝ 

𝑑 ×ℝ ,  is a skew-symmetric or negative 

semidefinite differential operator, G is a functional defined by 

𝐺 = ∫ℝ 𝑑 𝑔( 𝑥 ; 𝑢, 𝑢 𝑥 , 𝑢 𝑥𝑥 , …) 𝑑𝑥, 

and 𝛿G / 𝛿u denotes the variational derivative of G . 

In the past few decades, the systematic methods for designing nu- 

merical scheme that preserve energy or dissipation property have been 

intensively studied. Furihata [7] proposed a finite difference method 

for sloving the system 

𝜕𝑢 

𝜕𝑡 
= 

(
𝜕 

𝜕𝑥 

)𝛼
𝛿𝐺 

𝛿𝑢 
which inherits the energy conser- 

vation or dissipation property. Celledoni et al. [5] developed a more 

general framework for obtaining the conservative or dissipative dis- 

cretization of (1.1) and illustrated the method by using the finite dif- 

ference method and spectral method. Furthermore, Matsuo [19] estab- 

lished an adaptive conservative or dissipative numerical method based 

on Galerkin method for nonlinear evolutionary partial differential equa- 

tions. 

However, all the methods presented above have some limitations 

when applied to nonuniform grids. Hence, we devote to proposing a 

simple and effective discretization method performing on nonuniform 

grids. The quasi-interpolation method is a good candidate which has 

been widely studied in the literature to process scattered centers. It was 
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first proposed by Hardy [15] for the design of aircraft and then devel- 

oped by many authors, Beatson and Powell [1] , Beatson and Dyn [2] , 

Buhmann [3,4] , Wu and Schaback [23] , just name a few. Moreover, it 

has been applied broadly to various fields, such as numerical solution 

for differential equations [6,9,16] , boundary detection [8] , symplectic 

scheme [24] and so on. 

The most salient feature of quasi-interpolation method is that it pro- 

vides the approximation solution directly without the requirement to 

solve the linear system of equation. Besides, it approximates high-order 

derivatives in a stable way compared with the finite difference method 

[17,18] . And it is extremely suitable for nonuniform grids. Hence, we 

employ the quasi-interpolation method in the spatial dicretization of the 

Eq. (1.1) . 

The procedure of our method can be described in the following steps. 

Firstly, we discretize the energy functional based on quasi-interpolation 

method. Then we derive the semi-discretized system from this discrete 

energy functional. Finally, employing average vector field method in 

temporal domain to obtain the full-discretized scheme. 

The paper is organized as follows. Section 2 provides the basic 

theory of the evolutionary partial differential equations and quasi- 

interpolation. The conservative or dissipative discretization method is 

discussed in Section 3 . Several examples are given in Section 4 to illus- 

trate the performance of the method. Section 5 concludes the paper. 

2. Preliminaries 

2.1. Evolutionary partial differential equations 

Consider the evolutionary partial differential equations of the form 

(1.1) with  a skew-symmetric or negative semidefinite operator. If  
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is a skew-symmetric operator, then the energy of the system is invariant 

with respect to time, namely 

𝑑𝐺 

𝑑𝑡 
= 

⟨ 
𝛿𝐺 

𝛿𝑢 
, 
𝜕𝑢 

𝜕𝑡 

⟩ 
= 

⟨ 
𝛿𝐺 

𝛿𝑢 
,  

𝛿𝐺 

𝛿𝑢 

⟩ 
= 0 . 

The typical examples for this kind of equations are Hamiltonian wave 

equation, Schrödinger equation and Maxwell equation. In this case, we 

use the operator  to replace  . 

If  is negative semidefinite, then the system has a dissipation prop- 

erty 

𝑑𝐺 

𝑑𝑡 
= 

⟨ 
𝛿𝐺 

𝛿𝑢 
, 
𝜕𝑢 

𝜕𝑡 

⟩ 
= 

⟨ 
𝛿𝐺 

𝛿𝑢 
,  

𝛿𝐺 

𝛿𝑢 

⟩ ≤ 0 . 

Many famous equations including heat equation, Allen–Cahn equa- 

tion, Cahn–Hilliard equation, Ginzburg–Landau equation can de derived 

from the general form (1.1) by taking different operators  and func- 

tionals G . In this case, we denote  by  . 

As we can see, under appropriate boundary conditions, the energy 

functional of the system is conservative or dissipative with respect to 

time. So one might expect that the numerical scheme also has the energy 

conservation or dissipation property to provide more accurate solution 

satisfying the physical law. In this paper, we will use quasi-interpolation 

method in space discretization to derive conservative or dissipative nu- 

merical schemes. 

2.2. Quasi-interpolation 

In this section, we briefly introduce the quasi-interpolation method. 

For more details, one can refer to [3,10–14,22] and the references 

therein. 

Given sampling data { x j , f ( x j )}, the quasi-interpolant can be con- 

structed as [22] 

𝑓 ∗ ( 𝑥 ) = 

∑
𝑗 

𝑓 ( 𝑥 𝑗 ) 𝜓( 𝑥 − 𝑥 𝑗 )Δ𝑗 , (2.1) 

where 𝜓( x ) is a symmetric kernel with certain smoothness and decaying 

conditions and satisfies 

∫ℝ 𝑑 𝜓( 𝑥 ) 𝑑𝑥 = 1 , 

{ Δj } are positive weights of quadrature satisfy 

∫ℝ 𝑑 𝑓 ( 𝑥 ) 𝑑𝑥 ≈
∑
𝑗 

𝑓 ( 𝑥 𝑗 )Δ𝑗 . 

The quasi-interpolation method gives the approximation solution di- 

rectly without solving linear system. So it is very simple and consumes 

less time. Moreover, the approximation order of the quasi-interpolation 

f ∗ ( x ) to f ( x ) was analyzed in [22] . Furthermore, [17] gave the conver- 

gence order of the k th derivatives ( f ∗ ) ( k ) ( x ) to f ( k ) ( x ). They also verified 

that the quasi-interpolation method is more stable than finite difference 

method. 

3. Conservative or dissipative discretization method 

In this section, we present the conservative or dissipative discretiza- 

tion method of the general evolutionary PDEs of the form (1.1) . We first 

discretize the energy functional by using quasi-interpolation and then 

obtain the semi-discretized equations. Finally, we employ the average 

vector field (AVF) method for temporal discretization. 

3.1. Space discretization using quasi-interpolation method 

In spatial domain, we firstly discretize the integral 

𝐺 = ∫ℝ 𝑑 𝑔( 𝑥 ; 𝑢, 𝑢 𝑥 , 𝑢 𝑥𝑥 , …) 𝑑𝑥 

by using quasi-interpolation method. 

Given data { u ( x j , t )}, we construct the quasi-interpolation 

𝑢 ∗ ( 𝑥, 𝑡 ) = 

∑
𝑗 

𝑢 ( 𝑥 𝑗 , 𝑡 ) 𝜓( 𝑥 − 𝑥 𝑗 )Δ𝑗 . (3.1) 

Then one can obtain the approximation of m th derivative 

𝑢 ( 𝑚 ) ( 𝑥 𝑘 , 𝑡 ) ≈ ( 𝑢 ∗ ) ( 𝑚 ) ( 𝑥 𝑘 , 𝑡 ) = 

∑
𝑗 

𝑢 ( 𝑥 𝑗 , 𝑡 ) 𝜓 

( 𝑚 ) ( 𝑥 𝑘 − 𝑥 𝑗 )Δ𝑗 . (3.2) 

Next we approximate the L 2 inner product by quadrature to arrive 

at a weighted inner product 

⟨𝑢, 𝑣 ⟩𝐿 2 = ∫ 𝑢 ( 𝑥 ) 𝑣 ( 𝑥 ) 𝑑𝑥 ≈
𝑁 ∑
𝑗=1 

𝑢 ( 𝑥 𝑗 ) 𝑣 ( 𝑥 𝑗 )Δ𝑗 = 𝑈 

𝑇 Δ𝑉 = ⟨𝑈, 𝑉 ⟩Δ, 
where 𝑈 = (… , 𝑢 ( 𝑥 𝑗 , 𝑡 ) , …) 𝑇 and Δ = diag (Δ𝑗 ) . 

Finally, we can obtain the discretization of integral G which can be 

characterized as the following form 

𝐺 𝑝 = 𝐺 𝑝 ( 𝑈 ; Δ, Ψ1 , … , Ψ𝑚 ) , (3.3) 

where Ψ𝑚 = ( 𝜓 

( 𝑚 ) ( 𝑥 𝑘 − 𝑥 𝑗 )) . 
In order to derive the spatial discretization of the equation, we need 

to characterize the discrete variational derivative of G p . According to 

the definition of the discrete variational derivative ⟨ 

𝛿𝐺 𝑝 

𝛿𝑈 

, 𝑉 

⟩ 

Δ
= 

𝑑 

𝑑𝜖

||||𝜖=0 𝐺 𝑝 ( 𝑈 + 𝜖𝑉 ) , ∀𝑉 ∈ ℝ 

𝑁 , 

which means that ( 

𝛿𝐺 𝑝 

𝛿𝑈 

) 𝑇 

Δ𝑉 = (∇ 𝐺 𝑝 ( 𝑈 )) 𝑇 𝑉 , ∀𝑉 ∈ ℝ 

𝑁 , 

we conclude that 

𝛿𝐺 𝑝 

𝛿𝑈 

= Δ−1 ∇ 𝐺 𝑝 ( 𝑈 ) . 

In the followings, we discuss the conservative case and the dissipa- 

tive case separately. 

Conservative type. The equation is defined as 

𝜕𝑢 

𝜕𝑡 
=  𝛿𝐺 

𝛿𝑢 
. (3.4) 

Using 
𝛿𝐺 𝑑 

𝛿𝑈 
as an approximation to 𝛿𝐺 

𝛿𝑢 
and approximating  by ma- 

trix  𝑝 which is skew-symmetric with respect to ⟨ · , · ⟩Δ, we have the 

following semi-discretized system 

𝑑𝑈 

𝑑𝑡 
=  𝑝 Δ−1 ∇ 𝐺 𝑝 ( 𝑈 ) . (3.5) 

The energy conservation can be described in the following theorem. 

Theorem 3.1. If U satisfies the system (3.5) and G p is defined as (3.3) , 

then the following equality holds 

𝑑𝐺 𝑝 

𝑑𝑡 
= 0 . 

Proof. With the definition of G p , we have 

𝑑𝐺 𝑝 

𝑑𝑡 
= (∇ 𝐺 𝑝 ( 𝑈 )) 𝑇 𝑈 𝑡 . 

Using the following relation 𝑈 𝑡 =  𝑝 Δ−1 ∇ 𝐺 𝑝 ( 𝑈 ) , we can conclude 

that 

𝑑𝐺 𝑝 

𝑑𝑡 
= (∇ 𝐺 𝑝 ( 𝑈 )) 𝑇  𝑝 Δ−1 ∇ 𝐺 𝑝 ( 𝑈 ) . 

Since  𝑝 is skew-symmetric with respect to inner product ⟨ · , · ⟩Δ, we 

have 

(  𝑝 Δ−1 ) 𝑇 = Δ−1 (  𝑝 ) 𝑇 ΔΔ−1 = −Δ−1 Δ 𝑝 Δ−1 = −  𝑝 Δ−1 . 

This shows that the matrix  𝑝 Δ−1 is also skew-symmetric. Hence the 

theorem holds. □

Dissipative type. The equation is defined as 

𝜕𝑢 

𝜕𝑡 
=  

𝛿𝐺 

𝛿𝑢 
. (3.6) 
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