
Engineering Analysis with Boundary Elements 96 (2018) 194–208

Contents lists available at ScienceDirect

Engineering Analysis with Boundary Elements

journal homepage: www.elsevier.com/locate/enganabound

Parallel and vectorized implementation of analytic evaluation of boundary

integral operators

Jan Zapletal a , b , ∗ , Günther Of c , Michal Merta

a , b

a IT4Innovations, V Š B – Technical University of Ostrava 17. listopadu 2172/15, Ostrava-Poruba 708 33, Czech Republic
b Department of Applied Mathematics, V Š B – Technical University of Ostrava. 17. listopadu 2172/15, Ostrava-Poruba 708 33, Czech Republic
c Institute of Applied Mathematics, Graz University of Technology, Steyrergasse 30, Graz A-8010, Austria

a r t i c l e i n f o

MSC:
65N38
65Y05
68W10

Keywords:
Boundary element method
Quadrature
SIMD
Vectorization
Intel Xeon Phi
Many-core

a b s t r a c t

In this paper, we describe an efficient analytic evaluation of boundary integral operators. Firstly, we concentrate
on a novel approach based on the simultaneous evaluation of all three linear shape functions defined on a bound-
ary triangle. This results in a speedup of 2.35–3.15 times compared to the old approach of separate evaluations.
In the second part we comment on the OpenMP parallelized and vectorized implementation of the suggested
formulae. The employed code optimizations include techniques such as data alignment and padding, array-of-
structures to structure-of-arrays data transformation, or unit-strided memory accesses. The presented scalability
results, with respect both to the number of threads employed and the width of the SIMD register obtained on
an Intel ® Xeon TM processor and two generations of the Intel ® Xeon Phi TM family (co)processors, validate the
performed optimizations and show that vectorization needs to be an inherent part of modern scientific codes.

1. Introduction

The computation of matrix entries and the evaluation of represen-
tation formula are of major importance in boundary element methods
(BEM). On one hand, the often singular integrals have to be computed
with sufficient accuracy to preserve important matrix properties and the
optimal order of convergence. On the other hand, the computation has
to be fast as this is a major part of the total computational time, even for
fast boundary element methods. A popular approach is to use explicit
analytical formulae for the evaluation of boundary integral operators.
The related formulae have been topic of research for decades; recent
publications discussing the topic include [1–10] . For approaches avoid-
ing singular integrals see, e.g., [11–13] . In most cases, the formulae are
provided for plane triangles and the kernel |𝑥 − 𝑦 |−1 and its derivatives.
As the formulae are exact, they are obviously related. However, the
knowledge of a formula is just part of the story as certain geometric
settings lead to special cases in its evaluation which have to be handled
with extra care in the implementation. Thus, a pure comparison of the
formulae is not sufficient to rate the quality of the approaches.

In this paper, we use a carefully developed and extensively tested
implementation based on the formulae in [5,10] . We focus on the evalu-
ation of single- and double-layer potentials of the 3D Laplace kernel and
linear shape functions. The formulae in [5,10] suggest choosing a local

∗ Corresponding author at: IT4Innovations, V Š B – Technical University of Ostrava, 17. listopadu 15/2172, 70833 Ostrava-Poruba, Czech Republic.
E-mail address: jan.zapletal@vsb.cz (J. Zapletal).

coordinate system in the plane triangle related to the considered linear
shape function. Then, three independent computations are required to
compute the integrals for the three linear shape functions of a single
triangle. In this paper, we compute these three integrals at once, which
reduces the computational effort to almost one third. To do so, we
present additional analytic formulae which are related to the setting
chosen in [5] . The formulae (2.13) and (2.14) for the double-layer
potential with constant basis function were known but unpublished.
The formulae (2.15) and (2.16) for the double-layer potential and
some other linear basis function, as well as the corresponding formulae
(2.26) and (2.28) for the single-layer potential are new in this setting.
As we observed that all formulae of these three cases have major parts
in common, we were able to elaborate the simultaneous computation
of the potentials for all three linear shape functions of a triangle. These
results are presented in Section 2.2.4 for the double-layer potential
and in Section 2.3.4 for the single-layer potential. The results of
Section 4.1 show good speedups for the related computational times,
ranging from 2.35 to 3.15 with the new simultaneous computation.

The second part of the paper is devoted to the efficient imple-
mentation of the suggested evaluation routines for modern multi- and
many-core (co)processors with wide SIMD registers. It has become more
or less standard in scientific codes to utilize shared- and distributed-
memory parallelism achieved by OpenMP and MPI, and thus to use the

https://doi.org/10.1016/j.enganabound.2018.08.015
Received 24 May 2018; Received in revised form 22 August 2018; Accepted 29 August 2018
Available online 20 September 2018
0955-7997/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.enganabound.2018.08.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enganabound
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2018.08.015&domain=pdf
mailto:jan.zapletal@vsb.cz
https://doi.org/10.1016/j.enganabound.2018.08.015

J. Zapletal et al. Engineering Analysis with Boundary Elements 96 (2018) 194–208

computational power of all available cores. However, in recent years
the theoretical peak performance of CPUs has also been rising due to
the capabilities of vector processing units able to perform simultaneous
computations on vectors of data. This concept, known as Single Instruc-
tion Multiple Data (SIMD), is becoming increasingly important. Indeed,
the newest AVX512 (Advanced Vector Extensions) instruction set is
able to operate on 512 bits of floating-point data, which translates to
8 double-precision operands. Neglecting in-core vectorization can thus
reduce the performance by a factor of 8 (or even 16 in single-precision
arithmetic). Recently, several papers have been published dealing
with many-core vectorized implementation of numerical methods, see
[14,15] for GP-GPU accelerated numerical assembly of BEM matrices,
[16] for 2D BEM for the Laplace equation, [17] for efficient quadrature
routines in the context of the finite element method (FEM), [18,19] for
stencil-based simulations of geophysical flows, [20–22] for the perfor-
mance of CFD codes, and [23] for the acceleration of the finite element
tearing and interconnecting (FETI) solver.

Vectorization can be achieved via different strategies. One option
is the inline assembly code or compiler-specific intrinsic functions
for compute-intensive kernels. Although these can achieve optimal
speedup, the code is not portable between multiple architectures. A

second option is to use wrapper libraries providing vector implementa-
tion of common mathematical functions in several vector instructions
sets (including, e.g., SSE4.2, AVX2, or AVX512) resulting in a portable
implementation. In [24] we describe the application of the Vc library
[25] to both the semi-analytic and numerical BEM assembly. The
VCL library [26] can be used in a similar fashion. In [27] we used
OpenMP SIMD pragmas described by the OpenMP standard [28] for the
vectorization of the regularized numerical assembly of BEM matrices. In
contrast to [27] , where we showed that the efficiency of this approach
can get very close to the optimal values, in this paper we use OpenMP
SIMD to accelerate the presented analytic evaluations. Although this
approach is slightly less explicit than the methods mentioned above, the
compiler is able to perform additional optimizations and can contribute
to better performance.

This part of the paper is structured as follows; code optimizations
employed for the efficient parallelization and vectorization of the
semi-analytic assembly and the exact evaluation of the representation
formula are presented in Section 3 . In Sections 4.2 and 4.3 we provide
results obtained on multi- and many-core architectures using the Intel
Xeon and Xeon Phi (co)processors. The suggested rather simple thread-
ing approach leads to optimal speedup on all tested architectures,
see Tables 4.2 –4.4 for detailed results. For the performance of the
vectorized code we refer to Tables 4.5 –4.7 , where one can see that
changing the width of a SIMD vector processed simultaneously by
vector processing units leads to significant speedups ranging from 4.95
to 7.75 for the matrix assembly and the evaluation of the representation
formula, respectively. Taking into account all proposed techniques,
i.e., the simultaneous evaluation for all shape functions and OpenMP
threading and vectorization, the speedup with respect to the scalar
sequential version reaches up to several hundred on Xeon and Xeon Phi.

As mentioned above, for simplicity we restrict our exposition to
the Laplace kernel. However, the presented simultaneous evaluation
of integral operators can be applied in the same manner for problems
modelling wave scattering with the Helmholtz equation, see [5,10] .
The boundary integrals are split into a singular part corresponding with
the Laplace kernel, and a non-singular remainder that can be treated
by a numerical scheme without further regularization. Moreover, the
boundary element matrices related to the Lamé equation for linear
elasticity problems can be built from sparse transformations of the
Laplace matrices, see [5, Section C.2.3] , for analytic evaluation in frac-
ture propagation problems also consult [29] . Thus, the parallelization
and vectorization techniques presented here can be applied in the same
manner for a rather broad range of engineering problems.

Although we concentrate on the full assembly of BEM matrices in
the presented paper, the developed techniques can easily be adapted for

fast approaches. The adaptive cross approximation [5,30] is based on
the full assembly of the so-called non-admissible blocks of the system

matrix and low rank approximation of the far-field. The low rank
approximation is built by assembling an appropriate subset of rows and
columns building these blocks, i.e., the assembly routines are used in a
very similar fashion. Numerical experiments comparing the paralleliza-
tion and vectorization of full and sparsified BEM matrices have been
presented in [27] . Similarly, the techniques presented here in the con-
text of Galerkin approximation can be applied to collocation schemes
without significant changes. Indeed, the numerical integration for the
outer surface integral can be seen as an evaluation of the boundary inte-
gral operators in collocation points – here serving as quadrature points.
In the paper we also concentrate on intra-node optimization in shared
memory. For large scale experiments the distributed level of parallelism

(achieved by MPI) has to be added to the method. This can be done,
e.g., with the boundary element tearing and interconnecting (BETI)
domain decomposition technique [31] in connection with the ESPRESO

library [32] developed at IT4Innovations, or with the distributed
version of the adaptive cross approximation (ACA) method [33,34] .

2. Analytic evaluation of singular integrals

In the following we consider the Dirichlet boundary value problem

for the Laplace equation in three spatial dimensions. We discuss analyti-
cal formulae to compute the single- and double-layer potentials for plane
triangles and linear shape functions. In particular, we present some
analytical formulae which are new in the setting of [5, Section C.2] .
The presented complete set of formulae allows the simultaneous com-
putation of the integral operators for the three linear shape functions of
a triangle at once, thus reducing the computational times significantly.

2.1. Model problem

In particular, we solve

−Δ𝑢 = 0 in Ω, 𝑢 = 𝑔 on 𝜕Ω (2.1)

where Ω ⊂ ℝ

3 denotes a bounded Lipschitz domain and g ∈H

1/2 (𝜕Ω)
is the given Dirichlet datum. An explicit formula for the solution to
(2.1) is given by, see, e.g., [35] ,

𝑢 (̃𝑥) = ∫𝜕Ω 𝑣 (̃𝑥 , 𝑦) 𝑤 (𝑦) d 𝑠 𝑦 − ∫𝜕Ω
𝜕

𝜕𝑛 𝑦
𝑣 (̃𝑥 , 𝑦) 𝑔(𝑦) d 𝑠 𝑦 for ̃𝑥 ∈ Ω (2.2)

with w ≔ 𝜕 u / 𝜕 n and 𝑣 ∶ ℝ

3 ×ℝ

3 → ℝ

3 denoting the fundamental
solution to the Laplace equation in 3D, i.e.,

𝑣 (𝑥, 𝑦) ∶=

1
4 𝜋

1 |𝑥 − 𝑦 | .
The unknown Neumann datum 𝑤 ∈ 𝐻

−1∕2 (𝜕Ω) can be determined by
solving the weakly singular boundary integral equation obtained from

(2.2) by taking the limit Ω ∋ 𝑥 → 𝑥 ∈ 𝜕Ω,

𝑉 𝑤 (𝑥) =

1
2
𝑔(𝑥) + 𝐾𝑔(𝑥) for almost all 𝑥 ∈ 𝜕Ω (2.3)

with the single- and double-layer boundary integral operators

𝑉 ∶ 𝐻

−1∕2 (𝜕Ω) → 𝐻

1∕2 (𝜕Ω) , 𝑉 𝑤 (𝑥) ∶= ∫𝜕Ω 𝑣 (𝑥, 𝑦) 𝑤 (𝑦) d 𝑠 𝑦 ,

𝐾 ∶ 𝐻

1∕2 (𝜕Ω) → 𝐻

1∕2 (𝜕 Ω) , 𝐾𝑔 (𝑥) ∶= ∫𝜕Ω
𝜕

𝜕𝑛 𝑦
𝑣 (𝑥, 𝑦) 𝑔(𝑦) d 𝑠 𝑦 ,

respectively. Both boundary integral operators are linear and bounded,
and the 𝐻

−1∕2 (𝜕Ω) -ellipticity of V ensures unique solvability of (2.3) ,
see, e.g., [35] . The variational formulation equivalent to the equa-
tion (2.3) used for the discretization by the boundary element method
reads

⟨𝑉 𝑤, 𝑡 ⟩𝜕Ω =

⟨ (1
2
𝐼 + 𝐾

)
𝑔, 𝑡

⟩
𝜕Ω

for all 𝑡 ∈ 𝐻

−1∕2 (𝜕Ω) (2.4)

195

Download English Version:

https://daneshyari.com/en/article/10132719

Download Persian Version:

https://daneshyari.com/article/10132719

Daneshyari.com

https://daneshyari.com/en/article/10132719
https://daneshyari.com/article/10132719
https://daneshyari.com

