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In this paper, we propose a novel kernel adaptive filtering algorithm, which called variable learning 
rates kernel adaptive filter with single feedback (SF-VLRKAF). Based on a feedback structure, the past 
information can be used to estimate current output to improve the filtering performance, because of a 
momentum term existing in the weight update equation. A switch ON–OFF normalized variable learning 
rate is developed to obtain a tradeoff between convergence rate and filtering accuracy of the proposed 
algorithm. The weights, in the SF-VLRKAF, are updated at each iteration to avoid local minimum, and the 
analysis of mean square convergence is performed. Furthermore, a sufficient condition ensuring mean 
square convergence is obtained by applying the energy conservation relation. Moreover, we derive the 
lower and upper bounds on a theoretical result of the steady-state excess mean square error. Simula-
tions for nonlinear regression, chaotic time-series predictions and real-world applications are presented 
to illustrate the effectiveness of the new algorithm.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

During the past decade, there has been a growing interest in 
kernel methods, e.g., support vector machines, Gaussian processes, 
regularization networks [1], and these kernel methods have been 
extensively applied in many areas including time series prediction, 
channel equalization, pattern classification, dimensionality reduc-
tion, image processing and nonlinear regression [2,3]. However, 
since most kernel methods are batch algorithms, they are not suit-
able for real-time applications. Therefore, the extension of kernel 
methods to online algorithms is quite necessary.

Recently, the kernel adaptive filter (KAF) as a class of effi-
cient online learning algorithms has been widely studied. KAF is 
a natural generalization of linear adaptive filters in the reproduc-
ing kernel Hilbert spaces (RKHS), which allows nonlinear learning 
problems to be solved in the input space as convex optimization 
problems in the transformed space. The inner product operation 
in the RKHS can be computed efficiently by the kernel trick, which 
will be explained in the next section. From the data space perspec-
tive, the KAFs can be developed in two different spaces, i.e., the 
original input space and RKHS. Classical adaptive algorithms can 
be directly kernelized to obtain some elegant KAFs, e.g., the kernel 
least mean square (KLMS) [4], the kernel affine projection algo-

* Corresponding author.
E-mail address: zhanghb@uestc.edu.cn (H. Zhang).

rithm (KAPA) [5,6], the kernel recursive least squares (KRLS) [7]
and the extended kernel recursive least squares (EKRLS) [8]. The 
KRLS and EKRLS can also be explained from the viewpoint of 
Gaussian processes [9,10]. Moreover, the KAFs can be simply de-
rived in the RKHS, for instance, one can use the statistical steepest 
descent method to obtain the updated forms [2,3,11]. The inner 
relation of these two spaces can be illustrated from the viewpoint 
of isomorphism [12]. In addition, according to the types of ker-
nel functions used in the KAFs, the nonlinear filters can also be 
classified into the single-kernel KAFs (SK-KAFs) and the multiple-
kernel KAFs (MK-KAFs). In the SK-KAFs, a reasonable kernel has 
been assumed available prior to verify the efficiency of these algo-
rithms, such as the KLMS, KAPA and KRLS, etc., [1–8,11–21]. This 
assumption, however, is not always realistic, particularly when the 
non-stationary data are considered. And finding a reasonable ker-
nel is costly even though possible. Hence, MK-KAFs are proposed 
by finding more than one kernel in adapting to non-stationary en-
vironments [22–24].

Furthermore, as a kind of learning algorithms, the KAFs bear 
different performances on the basis of different updated forms. 
There are mainly three kinds of updated forms in KAFs: 1) there is 
only one component of weight updated at each learning process, 
others remain unchanged [4,16]; 2) some components of weights, 
e.g., the latest k components are updated as new data become 
available, typically a least-squares cost function is minimized [5,6]; 
and 3) all components of weights are updated at each training pro-
cess to avoid local minimum, which is similar to the treatment 

https://doi.org/10.1016/j.dsp.2018.06.007
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in neural networks [1,3,7,11]. In addition, there is much interest 
in developing complex kernel algorithms to effectively deal with 
complex valued signals [25]. But it is beyond the scope of this pa-
per.

It is worth noting that the main bottlenecks of KAFs are their 
growing structure and computational complexity with the increase 
of training samples. Online sparsification is therefore required 
to maintain a reasonable dictionary size for computational effi-
ciency as well as memory efficiency in the implementation of 
KAFs. The most widely investigated criteria of online sparsifica-
tion are the distance, the coherence criterion (CC), as well as the 
Babel criterion [26]. Resource-allocating networks have introduced 
the distance criterion to control their complexity in radial-basis-
function networks, and retain the most mutually distant samples 
[16,17,27]. In recent applications of compressed sensing [15,28], 
samples with mutually least coherence are retained. As an exten-
sion of CC, the Babel criterion uses the cumulative coherence as 
a measure of diversity [29]. It is worth noting that these crite-
ria are based on an approximation process [26]. In addition, there 
are other classical criteria, e.g., the approximate linear dependency 
(ALD) [7], the novelty criterion [27], the surprise criterion [14], 
the sparsity-promoting regularizations [18,19], the sliding window 
methods [30], and the fixed budget models [31–33]. Based on 
these sparsification methods, KAFs can be efficiently applied in 
real-time applications.

Regarding the filter structure, the KAFs have feedforward struc-
ture and feedback structure. Most KAFs have feedforward struc-
tures. The structure is independent of the previous output of the 
system [1,2,4–8,12–19]. It is common to consider, nevertheless, the 
past information provided to KAFs to construct feedback structure. 
This approach has been widely used in signal processing and neu-
ral networks [3,11,20,21,34]. Recently, we have proposed a KAF 
based on feedback, namely, the kernel least mean square with sin-
gle feedback (SF-KLMS) [11]. In the SF-KLMS, there is only one 
delayed output applied to update the weights in a recurrent fash-
ion, and the SF-KLMS can effectively improve the convergence rate 
of a KAF.

In this paper, we propose a new KAF algorithm, namely, the 
variable learning rates kernel adaptive filter with single feedback 
(SF-VLRKAF), which is based on an efficient structure [11]. Com-
pared with the SF-KLMS, we conduct some minor changes of the 
original algorithm to match the theoretical proof. In the SF-VLRKAF, 
only a single delayed output in a linear form is applied to up-
date all components of weights (feedforward weight and feedback 
weight) to minimize the cost function, e.g., least mean square. 
A switch ON–OFF normalized variable learning rate strategy is pro-
posed to further improve the filtering performance. We treat the 
feedback term as a special input based on the idea of the energy 
conservation relation (ECR) and real-time recurrent learning (RTRL) 
structure [34]. And then, the stability of SF-VLRKAF is analyzed by 
the ECR, and a sufficient condition for mean square convergence 
is also obtained. In addition, we derive effective lower and upper 
bounds on the steady-state excess mean square error of the pro-
posed algorithm. In this work, the coherence-based criterion for 
sparsification is utilized to deal with the increase of the structure 
size.

The rest of this paper is organized as follows. In Section 2, be-
fore presenting the SF-VLRKAF algorithm, we briefly introduce the 
concept of the Mercer kernel. Section 3 provides an analysis of the 
mean square performance, and presents the main theoretical re-
sults. Simulation results are presented in Section 4 to verify the 
effectiveness of SF-VLRKAF. Finally, discussions are given in Sec-
tion 5.

2. The SF-VLRKAF algorithm

Nonlinear signal processing problems are not readily solved by 
using linear models in their original low dimensional spaces. How-
ever, the nonlinear models can be established via applying a non-
linear mapping function, which transforms low dimensional spaces 
into high dimensional feature spaces. And, it is commonly known 
that Mercer kernels can be used to implement the nonlinear oper-
ations.

2.1. Mercer kernels

The Mercer kernel is a continuous, symmetric and positive-
definite function k(·, ·) : U × U → R, where U ⊂ R

l×1 is the in-
put space. The most important property of a Mercer kernel is the 
kernel trick, which allows inner-product based algorithms to be 
performed implicitly in a feature space F by replacing all inner-
products by kernels [13], i.e.,

k(u, u′) = 〈ϕ(u),ϕ(u′)〉, (1)

where u ∈ U; ϕ(·) is a nonlinear mapping function in the RKHS; 
and ϕ(u) ∈ F with high (or infinity) dimensionality. A commonly 
used kernel is the Gaussian kernel, i.e.,

k(u, u′) = exp(−‖u − u′‖2

2h2
), (2)

where h > 0 is a kernel bandwidth, and the notation ‖ · ‖ is 
the Euclidean norm in U. The Gaussian kernel is unit-norm, i.e., 
k(u, u) = 1 for any sample u ∈ U.

It has been proved that, when the Gaussian kernel used, for any 
continuous input–output mapping f : U → R and ∀ε > 0, there 
exist some useful sampled data {u(C1), u(C2, . . . , u(Cm))} ⊆ U and 
kernel weights {ω1, ω2, . . . , ωm} ⊆R such that [35]

‖ f (·) − aT ϕ(·)‖u = ‖ f (·) −
m∑

l=1

ωl〈ϕ(u(Cl)),ϕ(·)〉‖u < ε, (3)

where a = ∑m
l=1 ωlϕ(u(Cl)) is a vector in F; u(Cl) denotes the l-th 

element of a dictionary C(i) at discrete time i with m members, 
i.e., C(i) = {C1, C2, . . . , Cm}; and ‖ · ‖u is a nonnegative functional 
in U. Equation (3) implies that the linear model f (·) = aT ϕ(·) has 
the universal approximation property [13]. Based on the property, 
a well-known representer theorem claims that

f (·) =
m∑

l=1

ωl〈ϕ(u(Cl)),ϕ(·)〉 =
m∑

l=1

ωlk(u(Cl), ·), (4)

which is a theoretical basis of this paper.

2.2. SF-VLRKAF

As mentioned above, most of KAFs are feedforward networks, 
therefore, a KAF with feedback structure is proposed in this work. 
The linear recurrent kernel online learning algorithm with sparse 
updates (LRKOL) algorithm contains multiple same recurrent sig-
nals [3], however, our algorithm considers only single feedback 
information to get better filtering performance.

Fig. 1 shows the structure of the proposed kernel filter, where 
u(i) ∈ U ⊆ Rl×1 is the input column vector at discrete time i; 
kli = k(u(Cl), u(i)) is the Gaussian kernel; ω(i) = [ω1(i), ω2(i), . . . ,
ωm(i)]T ∈ R

m×1 is the feedforward weight vector (FFW), γ (i) ∈ R

is the feedback weight scalar (FBW); and y(i) ∈ R is the estimated 
output. Therefore, the relationship between the input and the out-
put can be expressed as



Download English Version:

https://daneshyari.com/en/article/10132763

Download Persian Version:

https://daneshyari.com/article/10132763

Daneshyari.com

https://daneshyari.com/en/article/10132763
https://daneshyari.com/article/10132763
https://daneshyari.com

