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The blind source separation (BSS) concerns recovering sources from their mixtures. Specifically, the 
sources in this paper, named intrinsic chirp sources (ICSs), are modeled as the linear combination of non-
linear chirp components (NCCs). A novel method is developed here to address the blind separation issue 
of them. Firstly, all the mixtures at each channel are decomposed into a series of NCCs by a parameterized 
decomposition approach. It can adapt to NCCs with time-frequency (T-F) distribution suffering from bad 
T-F concentration and non-disjoint T-F overlapping. Next, the reconstructed NCCs can be clustered into 
corresponding ICS according to the fact that the NCCs belonging to the identical ICS share the same 
column in mixing matrix. The source recovery and mixing matrix estimation are finally accomplished 
based on the clustering consequence. Three simulations demonstrate the capability of our method in 
dealing with challenging under-determined BSS cases and its potential in practical applications.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Blind source separation (BSS) focuses on recovering multiple 
sources from a set of mixing observations without a priori knowl-
edge of mixing system and sources. It can find great applications 
in many signal-concerned engineering occasions, such as audio and 
speech signal processing [1–3], radar signal processing [4,5], ma-
chine fault diagnosis [6], and biomedical signal processing [7,8]. 
Three classical mathematical models [6] are usually adopted to 
approximate the mixing system, i.e., instantaneous mixing model, 
anechoic mixing model and echoic mixing model. For the tractabil-
ity of mixing model in mathematics, some a priori assumptions are 
usually compensated for the sources in specific application situ-
ations, such as statistical independence between sources [9–11], 
sparsity of sources under certain dictionary [12] and special dis-
tribution of sources [13]. However, few efforts have been tried 
for instantaneous amplitude (IA) and instantaneous frequency (IF) 
modulated chirp source. Named as intrinsic chirp source (ICS) in 
this paper, it possesses wide applications [14–16].

The BSS approaches, based on spatial time-frequency distribu-
tion (STFD) [17–19], have been proposed one after another and at-
tracted plenty of attention in recent two decades. They are able to 
separate various kinds of sources with sparse time-frequency (T-F) 
structure, in which ICS is also included. Equipped with a proper 

* Corresponding author.
E-mail address: z.peng@sjtu.edu.cn (Z. Peng).

T-F point selection scheme, one of the approaches [20] based on 
STFD can solve the blind separation problem of ICSs with IF over-
lapping in over-determined case, where the number of sensors is 
more than that of sources. However, the over-determined case is 
not always valid in practice. A cluster-based T-F under-determined 
BSS (TF-UBSS) approach [21] has been developed later for under-
determined case, where there are more sources than sensors. This 
approach, assisted with a subspace-based algorithm [19,22], is also 
able to separate the ICSs with non-disjoint T-F overlapping. Though 
the STFD-based BSS approaches [5] can address the blind ICS sep-
aration issue in not a few occasions, they will still encounter dif-
ficulties under more challenging circumstances. For example, they 
should undertake a significant computational burden when heaps 
of T-F overlapping points arise. And they are incapable of dealing 
with the situation where there exist more sources than sensors 
at T-F overlapping region with the unique representation property 
unsatisfied [23]. Besides the STFD-based approaches, there also 
grew some other kinds of BSS approaches [4,24,25] that can re-
solve the blind ICS separation problem in certain cases, but they 
will all suffer in aforementioned challenging scenarios.

In this paper, a specialized blind ICS separation method is put 
forward to overcome the difficulties mentioned above for complex-
formed instantaneous mixing model. The reason of selecting in-
stantaneous mixing model is that it satisfies the requirements of 
the practical ICS applications [4,5]. The ICS, in our method, is firstly 
defined by a linear combination of non-linear chirp components 
(NCCs), whose IAs and IFs are parameterized by complex redun-

https://doi.org/10.1016/j.dsp.2018.08.015
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dant Fourier bases [26] and polynomial bases, respectively. Such a 
model can adapt to wide variety of chirp sources. And it is more 
general than those given in Ref. [4], where IA is assumed as a con-
stant and ICS is merely modeled by one NCC.

In previous blind separation approaches [5,17–21] for ICSs, the 
ICSs are usually recovered by transforming the clustered auto-
source T-F values back into time-domain. Different from that, the 
NCCs are regarded as clustering objects in our method and the ICSs 
are recovered by adding up all the NCCs clustered into the same 
category. To be specific, the method proposed in this paper firstly 
decomposes the observations at all channels into a series of NCCs 
by a parameterized decomposition approach. It is immune to the 
NCCs with complex T-F characters, such as non-disjoint T-F over-
lapping and above-mentioned challenging scenarios suffered by 
STFD-based approaches. Thanks to the parameterized NCC model, 
the IAs and IFs of each component can also be obtained imme-
diately after decomposition. The next significant step of our blind 
ICS separation method is the clustering of reconstructed NCCs. The 
decomposition consequence indicates that NCCs belonging to the 
same ICS correspond to the identical column vector in mixing 
matrix [25]. This characteristic is used here to cluster NCCs into 
corresponding ICSs depending on the distances between their cor-
responding column vectors, which can be estimated from the IAs 
of reconstructed NCCs. An empirical distance threshold is adopted 
here for clustering, which is robust to the noise strength below 
certain level. The ICSs recovery and mixing matrix estimation are 
finally accomplished with the clustering result.

The remainder of this paper is organized as follows. In Sec-
tion 2, the blind ICS separation problem is formulated under 
the frame of general BSS mathematical model. A novel blind ICS 
separation method is proposed in Section 3, which is illustrated 
through two parts, i.e., observation decomposition and NCC clus-
tering. And finally, Section 4 demonstrates the proposed method 
by three examples, which is followed by the conclusion section, 
i.e., Section 5.

2. Problem formulation

The complex-formed instantaneous mixing model of BSS issue 
at certain channel m can be mathematically expressed as

xm(t) =
N∑

n=1

amnsn(t) + nm(t), (1)

where sn(t) (n = 1, 2, · · · , N) is the nth source signal; xm(t) (m =
1, 2, · · · , M) is the mth observation; nm(t) is the white Gaussian 
noise at mth observation; amn ∈ C quantifies the amplitude atten-
uation rate |amn| and phase delay � amn of sn(t) at mth channel. 
The corresponding matrix mode of Eq. (1) is

x(t) = As(t) + n(t), (2)

where

x(t) = [
x1(t), x2(t), · · · , xM(t)

]T
,

A = [a1,a2, · · · ,aN ], an = [a1n,a2n, · · · ,aMn]T ∈ C
M ,

s(t) = [
s1(t), s2(t), · · · , sN(t)

]T
,

n(t) = [
n1(t),n2(t), · · · ,nM(t)

]T
,

E
[
n(t)

] = 0M×1, E
[
n(t)nT (t)

] = diag
(
σ 2

1 , · · · ,σ 2
M

)
.

Herein, E[·] denotes mathematical expectation and σ 2
m (m =

1, 2, · · · , M) is the variance of white Gaussian noise nm(t). The 
scaling ambiguity of mixing matrix A is eliminated by assuming 
‖an‖2 = 1, and that aκ �= μaι is held for arbitrary nonzero con-
stant μ and unequal integral pair κ, ι ∈ {1, 2, · · · , N}.

In an important application scene of BSS, radar signal process-
ing, the mixing matrix A in instantaneous mixing model is usually 
modeled as [24]

A = A(�) = [
a1(Θ1),a2(Θ2), · · · ,aN(ΘN )

]
, (3)

where an(Θn) is named as steering vector, which just depends 
on the direction of arrival (DOA) Θn if the array pattern is pre-
determined. For general case in Eq. (2), there are M − 1 unknown 
variables in column vector an due to ‖an‖2 = 1.

In this paper, the sources in Eq. (2) are multi-component IA 
and IF modulated chirp signals, which are named as intrinsic chirp 
sources (ICSs) and mathematically defined as follows

Definition 1. As a continuous function, the source in Eq. (1) sn(t): 
R →R, sn(t) ∈ L∞(R) is named as the ICS, if

sn(t) =
Kn∑

k=1

c(k)
n (t), (4)

where the non-linear chirp component (NCC) c(k)
n (t) is formulated 

as [27]

c(k)
n (t) = A(k)

n (t)exp

[
j

(
2π

t∫
0

f (k)
n (τ )dτ + ϕ

(k)
n

)]
, (5)

with A(k)
n (t) and f (k)

n (t) satisfying the following restrictions

A(k)
n (t) ∈ C1(R) ∩ L∞(R), inf A(k)

n (t) > 0, sup A(k)
n (t) < ∞,

f (k)
n (t) ∈ C1(R), inf f (k)

n (t) > 0, sup f (k)
n (t) < ∞,∣∣∣∣dA(k)

n (t)

dt

∣∣∣∣,
∣∣∣∣df (k)

n (t)

dt

∣∣∣∣ ≤ ε
∣∣ f (k)

n (t)
∣∣.

Herein, A(k)
n (t) and f (k)

n (t) represent modulated IA and IF of 
NCC c(k)

n (t); ϕ(k)
n ∈ [0, 2π ] is the initial phase of c(k)

n (t) at t = 0; the 
constant ε controls the modulation strength; Kn ∈ N+ in Eq. (4)
denotes number of NCCs included in source sn(t). In addition, it 
should be noted here that all the superscripts of mathematical no-
tations with brackets denote the sequence numbers in this paper 
while those without brackets represent the powers.

The two primary missions in BSS are source recovery and mix-
ing matrix estimation. Specifically, in blind ICS separation problem, 
the source recovery mission can be accomplished by NCC recon-
struction and clustering.

3. Blind ICS separation method

3.1. Main idea

In this section, a blind intrinsic chirp source (ICS) separation 
method is proposed to achieve the source recovery and mixing 
matrix estimation. This method is executed in two steps. Firstly, 
the observations in all the channels are decomposed in units of 
non-linear chirp components (NCCs) by a parameterized decompo-
sition approach. The decomposed observation at mth channel can 
be rewritten as

xm(t) = am1

K1∑
k=1

c(k)
1 (t) + am2

K2∑
k=1

c(k)
2 (t) + · · ·

+ amN

K N∑
k=1

c(k)
N (t) + nm(t). (6)
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