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Computing the position of maximum of circulant convolution has been used for many applications in 
image and signal processing, and it usually is time-critical. Given the signal length N and the template 
size K , the conventional procedure requires O (K N) operations. With K � log N , this has been speeded 
by Fast Fourier Transform (FFT) with computation cost O (N log N).
This paper proposes a fast but heuristic scheme, returning only the position of maximum of convolution 
instead of the whole sequence after convolution. The main idea is to alias both the signal and template 
into lower dimensional space with the same dimension M being smaller than N and K , respectively. Thus, 
the computation cost is reduced to O (N + M log M) operations with M = �(

√
N), where M is the only 

user-defined parameter and plays the trade-off between the computation cost and successfully returning 
the position of the maximum. To guide how to decide M , we show that the sufficient condition of 
successfully returning the position of the maximum depends on the relationship between the maximum 
convolution and remaining convolution results based on three different cases, i.e., K ≤ M , K > M with 
M exactly dividing N or not exactly dividing N . We further show how the probability of success can 
be analyzed if both the signal and template are random. Simulations validate the proposed scheme is 
fast and efficient, and they support the theoretical results. A case study with synchronization in global 
positioning system (GPS) is taken as a case study to demonstrate the applicability of our method.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Computing the position of maximum of circulant convolution is 
a basic problem in signal processing. Given a template t ∈ RK and 
a signal x ∈ RN , the problem is finding the shift of t correspond-
ing to x, leading to the maximum correlation between x and t , as 
follows:

m = argmax
0≤k<N

(x � t−N)k, (1)

where (x)k is the kth entry of x, t = [(t)0, ..., (t)K−1],

t−N = [(t)0,0, ...,0, (t)K−1, (t)K−2, ..., (t)1] ∈ RN ,

and � denotes circulant convolution with period N . This problem 
is similar to calculation of the maximum cross correlation [1], but 
only the position is required instead of also requiring the value of 
the maximum.

Solving Eq. (1) plays an important role in many applications. 
For example, synchronization in communication [2–5] and sound 
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source localization [6–9] require time delay estimation [10–13]. 
Furthermore, when signals and templates are 2-dimensional (2D), 
a simple way is to vectorize both the input and template as the 
input of Eq. (1). By doing so, Eq. (1) can be extended to 2D cases. 
There are many applications involving 2D signals such as template 
matching [14,15], phase correlation [16,17], compression [18–20], 
and image registration [17,21]. Video tracking [22–27] usually re-
quires running in real-time, where many tracking techniques like 
[26,27] utilize maximum cross correlation to find the location of 
objects. In other words, it has potential to accelerate tracking by 
reducing the computation cost of finding the position of maximum.

Some applications run in real time and are energy-critical. For 
example, synchronization in global positioning system (GPS) [3]
requires real-time computation because the user needs the cur-
rent position instead of an outdated one. Sound source localization 
for traffic control [28] often demands a short response time, espe-
cially when the object is moving. In addition, if the system is built 
into a mobile device [3,5], energy consumption is an important is-
sue.

Thus, one main challenge of solving Eq. (1) is avoiding high 
computation time. Exhaustive search (full search) is conducted by 
checking (x � t−N )k from k = 0 to k = N − 1, which costs O (K N)
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and is unacceptably slow. Traditionally, convolution is speeded up 
by fast Fourier Transform (FFT) [11,14] as follows:

m = argmax
0≤k<N

(r)k with r = F−1 (F(x). ∗F(t−N)) , (2)

where “.∗” is Hadamard product and F(·) and F−1(·) denote FFT 
and inverse FFT (IFFT), respectively. The computation cost, bounded 
by FFT, is O (N log N). When K < N , zeros must be padded into t
until lengths of x and t are equal, and it still costs O (N log N).

Many techniques, summarized in the following, have been de-
veloped to reduce the computation time.

• Coarse-to-fine strategy [15,29,30]: First, a coarse search is con-
ducted by finding the downsampled template in the down-
sampled signal to yield a good match with reduced computa-
tional overhead. Then, a fine search is conducted in the orig-
inal space starting from the neighborhood of the best match 
found in coarse search.

• Full search-equivalent strategy [31–33]: It employs a rejection 
mechanism such that the current search is terminated as soon 
as some criteria are satisfied.

• FFT-based fast convolution [3,14]: Eq. (1) can be done quickly 
by sparse FFT or FFT.

It should be noted that most of the techniques focus on template 
matching instead of Eq. (1) directly. Nevertheless, template match-
ing is equivalent to solving Eq. (1) by adopting cross-correlation as 
the similarity measure.

Recently, based on the assumption that r is approximately 
1-sparse,1 Hassanieh et al. [3] proposed replacing F−1 by sparse 
FFT (sFFT), which is faster than FFT for the sparse Fourier trans-
form (SFT) problem. Instead of solving r directly, sFFT solves 
aliased r by downsampling F(x). ∗ F(t) as input, where aliasing 
a signal is defined as follows.

Definition 1. (Aliasing a signal as N is divisible by M) [3] Suppose 
a signal x ∈ RN and M ∈ N, which exactly divides N . The aliased 
signal xM ∈ RM via an aliasing factor M in the time domain is 
defined as:

(xM)k =
N
M −1∑
i=0

(x)k+iM .

By the fact that aliasing a signal in the time domain is equiv-
alent to downsampling it in the frequency domain and vice-versa, 
we know that, when the input of sFFT, i.e., F(x). ∗F(t), is down-
sampled, its output is aliased in the time domain accordingly. Thus, 
the position of maximum is determined by checking all possible 
shifts and picking the shift that gives the maximum correlation. 
Hassanieh et al.’s method requires that N be divisible by the size 
of the aliased signal. In addition, the computation cost requires 
O (N

√
log N) or O (N) operations, depending on the variance of 

noise.

1.1. Our contributions

Traditionally, solving Eq. (1) requires one to compute all N
values of (x � t−N )k ’s before finding the true position m of the 
maximum. Instead of wasting time to compute all values, in this 
paper, we propose a fast but somewhat heuristic scheme to find 

1 A vector contains only an entry with magnitude larger than other entries that 
are close to zero.

the candidate positions, including m, before calculating the value 
of (x � t−N )m .

Our method employs a circulant matrix to alias the signal first, 
and subsequent computations are conducted in the lower dimen-
sion space. Thus, when finding the candidate positions, no compu-
tation in the higher dimension space is required. This results in the 
computation overhead being O (N + M log M) with M = �(

√
N). 

When M < N
log N , the complexity is bounded by O (N). All we need 

to do is decide M , which plays the trade-off between the suc-
cessful match and computation cost (see Theorem 6). In fact, our 
method can be considered to be a generalization of [3] with the 
main results and differences summarized as follows.

1. We show how to find the candidate positions, including the 
ground truth m, via aliased signal and aliased template even 
when the length of the original signal is not divisible by that 
of the aliased signal. Specifically, we derive the sufficient con-
ditions of successfully finding the position of maximum under 
different parameter settings: (i) K ≤ M with M not exactly 
dividing N , (ii) K > M with M not exactly dividing N , and 
(iii) any K with M exactly dividing N . Our results characterize 
the relationship among N , M , the maximum convolution (r)m , 
and remaining convolution results (r)i ’s for all i �= m. Com-
pared with [3], their method is based on the assumption that 
M must exactly divide N .

2. [3] requires checking all possible O ( N
M ) shifts (candidate po-

sitions), including the position of the maximum. The authors 
show that O (M) multiplications and additions are needed to 
check each shift only if both the signal and template are bi-
nary random. Thus, the lowest computation cost is dominated 
by O (N) multiplications. In contrast, our algorithm exploits 
the commutative property between circulant matrices and em-
ploys two aliased r’s with different aliasing patterns based on 
Chinese Remainder Theorem (CRT) to directly identify the po-
sition of maximum without calculating all values of candidate 
positions such that the number of candidate positions can be 
reduced further to O (1). We show that only O (M) multipli-
cations are required in checking all candidate positions; thus, 
our scheme is dominated by O (N) additions, which come from 
the aliased signal. Furthermore, checking each shift, in general, 
requires O (N) operations without any assumptions about the 
signal and template. Under this situation, [3] and our method 
are dominated by O ( N2

M ) and O (N) multiplications, respec-
tively.

3. We take GPS as a critical application to compare with [3] un-
der noisy environments. We prove that our method is effective 
for find the position of maximum with probability of success 
being larger than 1 − o(1) and computational cost being O (N)

additions when the variance of noise is less than c(N)M
ln N with 

c(N) = o(1) and M ≤ N
log N , implying that our scheme has com-

parable performance with [3] under the condition that the 
probability of success converges to 1 with the same noise vari-
ance.

We further clarify the difference between the proposed method 
and previous SFT works based on CRT [34–37]. First, the SFT prob-
lem begins to have F(x). ∗ F(t) as inputs instead of x and t in 
our study work. In other words, the SFT problem originally as-
sumes that the required samples for solving r are known. In this 
paper, however, the required samples are unknown at the begin-
ning. Thus, the computation cost for generating samples, which is 
ignored in CRT-based SFT methods, needs to be considered. Sec-
ond, the SFT methods based on CRT suppose that there is greater 
than or equal to one divisor of N , where the number of divisors 
is algorithm-dependent. Nevertheless, our method can work even 
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