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a b s t r a c t

A viscoelastic model for a shear-deformable microplate is developed in this paper while
accounting for geometric nonlinearities. Nonlinear numerical solutions are conducted to
examine the resonant oscillations of the microsystem. The geometrically nonlinear theo-
retical model is developed utilising the Kelvin-Voigt viscoelastic model, to account for non-
linear dissipation, the modified version of the couple-stress theory, to account for small-
scale characteristics, and the third-order deformation theory, to account for shear stress.
The constitutive relations for both the classical and higher-order stress tensors are con-
structed and are divided into elastic and viscous components. The elastic components
are used to develop the potential strain energy and the viscous components are employed
to model the virtual work of damping (energy dissipation). Additionally, the microplate
motion energy is developed while accounting for all in-plane, out-of-plane, and rotational
motions. A distributed harmonic load, as the representative an external force, is applied to
the microsystem and the corresponding virtual work is obtained. The generalised
Hamilton’s principle is applied to the virtual works and variations of the energy terms,
resulting in the nonlinear equations of motion of the microsystem. Being of partial differ-
ential type, the equations of motion are discretised into a set of nonlinearly coupled ordi-
nary differential equations consisting of nonlinear geometric and nonlinear damping
terms. A solution procedure for the forced oscillation analysis of the microsystem is devel-
oped using a continuation method. Different diagrams are constructed to examine the non-
linear resonant characteristics of the viscoelastic shear deformable microplate and to
highlight the nonlinear dependency of the Kelvin-Voigt viscoelastic damping mechanism
on the oscillation amplitude, for a geometrically nonlinear model.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The bending and oscillations of microscale beams and plates are commonly used to measure external parameters in
different microelectromechanical systems (MEMS) [1–4] such as microscale sensors, resonators, energy harvesters, and
accelerometers [5–16]. It is shown that microresonators display nonlinear energy dissipation and that the internal energy
dissipation plays an important role in the forced or free motions of microscale structures. In the presence of geometric
nonlinearities, the material damping mechanisms such as Kelvin-Voigt, Zener, and Maxwell, become nonlinearly
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amplitude-dependent and hence are capable of capturing the damping nonlinearities associated with large-amplitude oscil-
lations. In this paper, Kevin-Voigt material damping is utilised to highlight the effect of damping nonlinearities in the non-
linear forced resonant oscillations of a shear deformable microplate. Furthermore, it has been discovered experimentally
[17–19] that when a structure becomes small, the size affects the motion/bending behaviour of the system which is char-
acterised by an additional stiffness in a linear sense. An advanced continuum mechanics theory should be employed to cap-
ture the size effects [20,21]; this paper utilises the modified couple stress (MCS) theory [22–27].

The number of studies on the elasticmodels of microplates incorporating linear damping mechanism is quite large, which
includes both geometrically linear and nonlinear studies. For instance, using the modified strain-gradient theory, Ashoori
et al. [28] obtained the linear out-of-plane equation of motion of a microscale plate. Hashemi and Samaei [29] employed
the nonlocal Mindlin plate theory to conduct a linear buckling investigation on micro/nonoplates under in-plane forces. Fur-
ther investigation was conducted by Wang et al. [30], who employed the strain gradient theory in conjunction with the
Kirchhoff plate theory, so as to study the linear size-dependent behaviour of microplates. Jomehzadeh et al. [31] conduced
a linear vibration analysis on a microplate making use of the MCS theory. The investigations were continued by Nabian et al.
[32], who analysed the stability of a functionally graded microplate under electrostatic and hydrostatic pressure. Employing
a meshless method together with MCS theory, Roque et al. [33] examined the bending characteristics of a shear deformable
microplate. Based on the nonlocal Eringen theory, Farajpour et al. [34] investigated the linear buckling response of a
graphene plate. Apart from the linear studies in the literature, there are also several studies of microplates utilising geomet-
rically nonlinear models. For instance, employing the MCS theory, Asghari [35] developed the geometrically nonlinear size-
dependent equations of motion of a microplate. Thai and Choi [36] developed size-dependent nonlinear functionally graded
Kirchhoff and Mindlin plate models on the basis of the MCS theory.

All the aforementioned valuable studies analysed the linear/nonlinear behaviour of microplates through use of elastic
models with linear damping mechanism. The present study analyses for the first time the forced nonlinear resonant oscilla-
tions of a shear deformable viscoelastic microplate while accounting for stiffness and damping nonlinearities. The nonlinear
equations of motion of the microplate are derived through use of the (i) MCS theory, (ii) the third-order shear deformable
plate theory, (iii) the Kelvin-Voigt viscoelastic material damping model, and (iv) generalised Hamilton’s principle. Further-
more, von-Kármán strain-displacement nonlinearities are accounted for, which due to employment of a Kelvin-Voigt mate-
rial damping model, results in both geometric and damping nonlinearities. Though use of a double-dimensional Galerkin
technique and via incorporating basis functions consistent with the fully clamped boundary conditions, the partial differen-
tial equations of motion are reduced and transformed into equations of ordinary differential type. Extensive numerical
calculations are then conduced employing a continuation technique. The nonlinear resonant characteristics of the viscoelas-
tic shear deformable microplate are examined while highlighting the nonlinear dependency of the damping to oscillation
amplitude.

2. Model development for a viscoelastic microplate

A geometrically nonlinear model of the third-order shear deformable microplate is developed in this section taking into
account two different damping mechanisms, i.e. the linear viscous damping mechanism and the Kelvin-Voigt viscoelastic
internal damping mechanism which consists of linear and nonlinear parts due to presence of geometric nonlinearities.
The reason for the presence of two damping mechanisms is to be able to compare them in the numerical simulations.
The considered microplate is shown in Fig. 1 within a Cartesian coordinate system (x,y,z). The microplate’s dimensions in
the x and y directions are denoted by a and b, respectively, while its dimension in the z direction (i.e. thickness) is shown
by h. The microplate is under a distributed excitation load of F1cosðxtÞ with F1 and x being the forcing amplitude and fre-
quency, respectively, and t being time. The employed third-order shear deformation theory contains five independent vari-
ables, i.e. three displacements and two rotations. The mid-plane displacement components are denoted by u, v, and w, in the
x, y, and z directions, respectively. The rotations of the transverse normal at z = 0 are shown by /1 and /2. Furthermore, the
components of the displacement vector are denoted by ux, uy, and uz.

In what follows, the third-order sear deformation theory, the modified couple stress theory, the Kelvin-Voigt viscoelastic
model, and the generalised Hamilton’s principle are employed to develop a discretised nonlinear model for the microplate.

Taking into account the von Kármán strain nonlinearities, the strain tensor components for a third-order shear deform-
able microplate can be written as [37]
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