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a b s t r a c t

We systematically study the meniscus on the outside of a small circular cylinder vertically immersed in a
liquid bath in a cylindrical container that is coaxial with the cylinder. The cylinder has a radius R much
smaller than the capillary length, j�1, and the container radius, L, is varied from a small value comparable
to R to 1. In the limit of L � j�1, we analytically solve the general Young-Laplace equation governing
the meniscus profile and show that the meniscus height, Dh, scales approximately with R lnðL=RÞ. In
the opposite limit where L � j�1; Dh becomes independent of L and scales with R lnðj�1=RÞ. We imple-
ment a numerical scheme to solve the general Young-Laplace equation for an arbitrary L and demonstrate
the crossover of the meniscus profile between these two limits. The crossover region has been deter-
mined to be roughly 0:4j�1KLK4j�1. An approximate analytical expression has been found for Dh,
enabling its accurate prediction at any values of L that ranges from microscopic to macroscopic scales.

� 2018 Elsevier Inc. All rights reserved.

1. Introduction

A liquid meniscus as a manifestation of capillary action is ubiq-
uitous in nature and our daily life. For example, its formation and
motion play critical roles in water uptake in plants [1]. Capillary
adhesion due to the formation of menisci between solid surfaces
makes wet hair to stick together and allows kids to build

sandcastles [2]. Menisci are also involved in many technologies
and industrial processes [3] such as meniscus lithography [4],
dip-pen nanolithography [5], dip-coating (Langmuir-Blodgett)
assembly of nanomaterials [6–8], meniscus-mediated surface
assembly of particles [9], meniscus-assisted solution printing
[10], etc.

A meniscus system frequently discussed in the literature is the
one formed on the outside of a circular cylinder that is vertically
immersed in a liquid bath. One application of this geometry is
the fabrication of fiber probes by chemical etching [11]. A cylinder
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with radius at the nanometer scale has also been attached to the
tip of an atomic force microscope to perform nano-/micro-
Whilhemy and related liquid property measurements [12]. The
shape of the meniscus is governed by the Young-Laplace equation
[13]. Extensive studies have been reported for the scenario where
the liquid bath is unbound and the lateral span of the liquid-
vapor interface is much larger than the capillary length of the liq-
uid [14–19]. Different methods have been applied in these studies,
including numerical integration [15,16] and analytical approaches
such as matched asymptotic expansions [17–19] and hodograph
transformations for cylinders with complex shapes [19]. An
approximate formula has been derived for the meniscus height,
which depends on the radius of the cylinder and the contact angle
of the liquid on the cylinder surface [14,17]. The meniscus exerts a
force that either drags the cylinder into or expels it from the liquid
depending on if the contact angle is acute or obtuse. A recent study
of the meniscus rise on a nanofiber showed that the force on the
nanofiber highly depends on the lateral size of the liquid-vapor
interface if this size is smaller than the capillary length [20].

In this paper we consider a geometry as sketched in Fig. 1 where
a small circular cylinder vertically penetrating a liquid bath that is
confined in a cylindrical container. With the cylinder and the con-
tainer being coaxial, the system has axisymmetry that enables cer-
tain analytical treatments. By fixing the contact angle on the
surface of the container to be p=2, we have a meniscus that sys-
tematically transits from being laterally confined to unbound,
when the size of the container is increased. For such a system,
the meniscus profile is governed by the general Young-Laplace
equation that was first studied by Bashforth and Adams more than
a century ago [21]. This equation has been discussed in various sys-
tems including liquid in a tube [22], sessile and pendant droplets
[23,24] and a capillary bridge between two spheres [25].

In the limit where the size of the cylindrical container is much
smaller than the capillary length, the gravitational term in the
Young-Laplace equation can be neglected and the equation
becomes analytically solvable. Solutions have been reported for
various capillary bridges between solid surfaces [26–28] and tested
with molecular dynamics simulations [29,30]. We have obtained a
solution for the meniscus in Fig. 1 based on elliptic integrals when
the lateral size of the meniscus is small and found that the menis-
cus height depends on the container size logarithmically. We fur-
ther numerically solve the full Young-Laplace equation for an
arbitrary container size and find that the meniscus height
approaches an upper limit found in some early work when the lat-
eral span of the interface is much larger than the capillary length
[14,16,17]. Finally, we find an approximate expression of the
meniscus height on the cylinder that is applicable to any lateral
size of the liquid-vapor interface. This work is the basis of a related
work on the wetting behavior of particles at a liquid-vapor inter-

face [31], where the theoretical results presented here are applied
to study the detachment of a spherical particle from a liquid bath.

2. Theoretical considerations

2.1. General equation of the meniscus shape

The geometry of the system considered in this paper is sketched
in Fig. 1. A circular cylinder with radius R is immersed in a liquid
bath confined in a cylindrical wall with radius L > R. The cylinder
and the wall are coaxial and the system is thus axisymmetric.
The shape of the meniscus in this ring-shaped tube is determined
by the surface tension of the liquid, the contact angles on the
two surfaces, and possibly gravity. Our interest is to examine the
crossover from the case where L� R is small to the case where
the cylinder is immersed in a liquid bath with an infinite lateral
span. Since in the latter limit the liquid-vapor interface is flat at
locations far away from the cylinder, we will set the contact angle
on the wall to be p=2. Then a meniscus will rise (depress) on the
outside of the cylinder if the contact angle on its surface, h1, is
smaller (larger) than p=2. The case where h1 ¼ p=2 is trivial with
the liquid–vapor interface being flat everywhere. Here we focus
on the case with h1 < p=2, where a meniscus rises on the cylinder
and generates a force to pull the cylinder into the liquid bath. How-
ever, the final results on predicting the meniscus height also apply
to the case where h1 > p=2.

The equilibrium shape of the meniscus is governed by a form of
the Young-Laplace equation studied by Bashforth and Adams
before [21],
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where zðrÞ is the meniscus height at distance r from the central axis

of the cylinder, z0 � dz
dr ; z

00 � d2z
dr2 ; Dp is the pressure jump from the

vapor to the liquid phase at r ¼ L and z ¼ 0; c is the surface tension
of the liquid, Dq � ql � qv is the difference of the liquid and vapor
densities, and g is the gravitational constant. A brief derivation of
this equation is provided in Appendix A. In the following discussion,
we use a water-air liquid interface at 25 �C as an example, for which
c � 0:072 N=m and Dq � 103 kg=m3.

To facilitate discussion, we define 2eH � Dp
c and j2 � Dqg

c , i.e.,

j�1 ¼
ffiffiffiffiffiffi
c

Dqg

q
is the so-called capillary length, which is a characteris-

tic length scale of the problem. For water at 25 �C, j�1 � 2:7 mm.
Eq. (1) can then be made dimensionless via a variable change

x � jr; y � jz: ð2Þ
The result is the following nonlinear differential equation

y00

ð1þ y02Þ3=2
þ y0

xð1þ y02Þ1=2
¼ 2eH

j
þ y; ð3Þ

with boundary conditions

y0 ¼ � cot h1 at x ¼ jR; ð4aÞ
y0 ¼0 at x ¼ jL and y ¼ 0: ð4bÞ

As pointed out in Ref. [22], Eq. (3) is invariant under the trans-

formation y ! �y; h1 ! p� h1, and eH ! �eH, indicating the sym-
metry between a rising and a depressing meniscus. This second-
order nonlinear differential equation can be rewritten in terms of
the local tilt angle of the liquid-vapor interface, /, as defined in
Fig. 1. Since y0 � dy

dx ¼ dz
dr ¼ tan/, Eq. (3) then becomes

d sin/
dx

þ sin/
x

¼ �2eH
j

� y: ð5ÞFig. 1. A rising meniscus on the outside of a circular cylinder vertically immersed in
a liquid bath confined in a cylindrical container that is coaxial with the cylinder.
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