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ABSTRACT

A model predictive control method for a flexible structure consisting of two beams, equipped with macro fiber
composite (MFC) patches as piezoelectric actuators is presented. Adjacent beams are connected at the tip by
an elastic string. The equations of motion are derived by the evaluation of the extended Hamilton’s principle.
Spatially dependent parameters are considered, due to different material characteristics of the carrier beams and
the MFC patches. The spatially dependent variable is approximated using Galerkin’s method, leading to the state
space representation of the beam structure by means of ordinary differential equations (ODEs). In order to avoid
approximation errors, a high order approximation of the distributed-parameter system is required. With a model
order reduction a small system describing approximately the same dynamics is obtained. A model predictive
controller is designed, analyzed and evaluated in a simulation and at the experimental set-up. For the real-time
capability of the model predictive controller a move blocking method by downsampling the prediction horizon

is presented.

1. Introduction

Flexible structures with distributed sensors and actuators, that are
bonded or embedded in an elastic carrier structure, are also called
smart structures (Banks, Smith, & Wang, 1996; Clark, Saunders, & Gibbs,
1998; Janocha, 2007; Stanewsky, 2001) and arise in a wide range of
applications. For example, in large earth based telescopes, the optical
wave fronts coming from celestial objects are disturbed by atmospheric
turbulence. Using adaptive optics the phase differences in the disturbed
wave fronts are detected by wave front sensors in the telescopes and
compensated by controlling the shape of deformable mirrors in real time
(Hardy, 1998; Preumont, 2011).

Smart structures with piezoelectric sensors and actuators find also
application in active vibration suppression (Fuller, Elliott, & Nelson,
1996). Examples include active vibration damping in the blades of
helicopters (Giurgiutiu, 2000; Shaw & Albion, 1981) or in spacecraft
structures (Won, Belvin, Sparks, & Sulla, 1994). Vibrations in mechani-
cal structures may lead to undesired noise. Active vibration suppression
can be designed in a way to reduce the noise inside an aircraft (Fuller,
Snyder, Hansen, & Silcox, 1992; Grewal, Zimcik, Hurtubise, & Leigh,
2000) or inside a car (Hurlebaus & Gaul, 2006).

Moreover the shape control of smart structures, where the surface
profile can be actively manipulated, has become increasingly popular

(Janocha, 2007). For example in aerospace applications an adaptive
wing can be hingelessly and smoothly deformed by using smart struc-
tures. Thereby, the aerodynamic performance, e.g., lift to drag ratio,
maneuver capabilities, and aeroelastic effects are improved compared
to the adaption of the shape profile using flaps (Antcliff & Mcgowan,
2000; Saggere & Kota, 1999; Yousefi-Koma & Zimcik, 2003). Many
different control approaches for manipulating the shape profile have
been applied to piezo-actuated flexible beam structures, as for example
infinite-dimensional control concepts (Kugi & Thull, 2005; Kugi, Thull,
& Kuhnen, 2006), passivity based control methods (Kugi & Schlacher,
2002), as well as H, and H_, control approaches (Kugi, 2001). Flatness
based feedforward control has been applied with great success for
shape control of flexible beam structures (Meurer, 2013; Rudolph &
Woittennek, 2002; Schrock, Meurer, & Kugi, 2010a) and combined with
feedback control to compensate occurring oscillations (Kater & Meurer,
2015). For vibration attenuation Lyapunov based control (Bailey &
Hubbard, 1985), positive position feedback control (Fanson & Caughey,
1990), optimal vibration control (Hanagud, Obal, & Calisej, 1992), as
well as fuzzy controller (De Abreu & Ribeiro, 2002; Lin & Liu, 2006) and
back propagation neural network controller (Qiu, Zhang, & Ye, 2012)
have been applied.

In this contribution, a model predictive controller is designed to per-
form a rest-to-rest motion of a piezo-actuated coupled beam structure,
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which is schematically shown in Fig. 1. Model predictive control (MPC)
is a method which explicitly uses the mathematical model to predict
the future dynamics of a system. The optimal input is calculated in
each sampling step by solving an optimization problem, in which the
error between system or output variables and a predetermined final
value is minimized (Camacho & Bordons, 2007; Rawlings & Mayne,
2009). By imposing constraints on the optimization problem physical
bounds of actuators are directly considered by the model predictive
controller (Maciejowski, 2002; Wang, 2009). MPC is well studied for
linear systems as well as for nonlinear systems (Allgéwer, Badgwell,
Qin, Rawlings, & Wright, 1999; Allgéwer & Zheng, 2012; Findeisen &
Allgower, 2002; Griine & Pannek, 2011) and can be found in a large
field of applications, e.g., process and chemical industries. An excellent
review of MPC applications in industry appears in Qin, Badgwell, Qin,
and Badgwell (2003).

In general, MPC is applied to systems, which are characterized
by slow system dynamics so that the optimization problem can be
solved within each sampling step in real-time. Contrary to this smart
structures are typically characterized by fast oscillatory dynamics,
which complicates the design and the implementation of model pre-
dictive controllers. Moreover, coupled flexible structures often show
the clustering of weakly damped eigenmodes and require to consider
high dimensional models to accurately reflect the system dynamics.
To address these issues a benchmark example for the MPC of smart
structures is subsequently considered in terms of an interconnected flex-
ible beam structure with embedded piezoelectric macro fiber composite
(MFC) patches as distributed actuators, see Fig. 1. The MFC patches
are elastically deformed by exploiting the indirect piezoelectric effect,
i.e., the conversion of an electrical voltage into a mechanical strain,
which is transferred to the beam as bending moment.

The mathematical modeling of the beam structure leads to a dis-
tributed parameter description by means of partial differential equations
(PDEs). In the analysis and control design for distributed parameter
systems one distinguishes between early lumping and late lumping
methods. In early lumping methods the spatial-temporal dynamics
of the distributed parameter system is approximated by a finite di-
mensional system of ordinary differential equations (ODE), whereas
in late lumping methods the complete dynamics of the distributed
parameter system is taken into consideration. Therefore, approximation
errors, e.g., spillover effects, may occur in the early lumping approach.
However, the mathematical complexity in late lumping is significantly
higher than in early lumping. In this contribution, an early lumping
approach is applied. Approximation errors and spillover effects are
addressed by using a high order approximation of the PDEs. The order
and therefore the complexity of the resulting system is systematically
reduced using a model order reduction method. A wide range of methods
exists for model order reduction, e.g., modal truncation (Antoulas, 2005;
Davison, 1966), proper orthogonal decomposition (Kerschen, Golinval,
Vakakis, & Bergman, 2005), or Krylov subspace model order reduction
methods (Daniel, Siong, & Chay, 2004; Hochbruck & Lubich, 1997;
Saad, 1981). In this contribution an extension to classical balanced
truncation (Antoulas, 2005; Laub, Heath, Paige, & Ward, 1987; Moore,
1981) is applied, in order to preserve the stability and the second order
structure of the mechanical system (Reis & Stykel, 2008).

The application of an MPC method to a highly dynamical weakly
damped system like the flexible beam structure of Fig. 1 is an inter-
esting and rather young field of research, which has to cope with the
challenges arising from the computational complexity for solving the
optimization problem in real-time on dedicated real-time hardware.
MPC for fast positioning of the end-effector of a single elastic arm
has been successfully implemented in Bossi, Rottenbacher, Mimmi,
and Magni (2011). Differing from these results for a boundary con-
trolled single beam, in the following a flexible beam structure with
coupled beams and piezoelectric in-domain actuation is considered
and model order reduction is addressed to systematically achieve a
model description of moderate size. Additional differences arise from
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the different system characteristics, which, e.g., require high sampling
frequencies to resolve the system dynamics. The implications of this are
also studied subsequently. The model predictive controller is designed
based on the time-discrete model of the flexible beam structure and
constraints are imposed on the input variables in order to consider
physical boundaries of actuators. The static optimization problem is
solved by using Hildreth’s quadratic programming procedure (Wang,
2009). For the application to the experimental set-up, a high sampling
frequency is required to capture the complete dynamics of the system.
However, the resulting computational complexity of the optimization
problem makes the model predictive controller not directly real-time
capable. A common approach to deal with this problem is to reduce
the degrees of freedom of the optimization problem by fixing the
input variables over several time-steps (Cagienard, Grieder, Kerrigan,
& Morari, 2007; Lee, Chikkula, Yu, & Kantor, 1995). A move blocking
method by downsampling the prediction horizon is presented, whereby
the model predictive controller can be executed in real-time with a
sufficiently high sampling frequency.

The paper is organized as follows: in Section 2 the equations of
motion are derived for the considered coupled flexible beam struc-
ture. Using a Galerkin approach a high order approximation of the
distributed-parameter system is introduced, which leads to a good
approximation quality but large computational times in view of MPC.
Model order reduction is studied in Section 3 to determine a low-order
model properly reflecting the dynamics of the high-order system that is,
however, suitable for a real-time MPC realization. The model predictive
controller is designed based on the reduced model in Section 4 and is
evaluated at the experimental set-up in Section 5.

2. Energy based modeling

The equations of motion of the flexible beam structure are derived
in a general manner for an arbitrary number of beams equipped with
an arbitrary number of MFC patches by making use of the extended
Hamilton’s principle. By taking into account the weak formulation of the
equations of motion we follow a Galerkin approach to determine a high-
order finite-dimensional approximation of the governing PDE model.

2.1. Beam configuration

The considered flexible beam structure, schematically shown in
Fig. 1, consists of n carbon fiber beams, which are clamped at z! = 0m.
At the free end z! = [, masses are attached. The masses of adjacent
beams are connected by an elastic string, modeled as linear spring.
All beams and MFC patches have the same dimensions. The spatially
distributed MFC patches are located pairwise symmetrically on each side
of the beam. Their spatial characteristics, schematically shown in Fig. 2,
is given by

Q,n(z2)=h (z - zrllym) —h (z - zrlliym - [,1,,1) @

where h denotes the Heaviside function, /,,, is the length and z;,m
is the border of the mth MFC patch pair on the nth beam along
the z-axis. By exploiting the indirect piezoelectric effect, an electrical
voltage is converted into a mechanical strain, which is transferred to
the beam as a bending moment proportional to the voltage, leading
to a deflection of the beam. The used MFC patches are operated with
an anti-symmetric voltage supply U,l,’/,;(t) € [-500, 1000] V, where the
superscript //r denotes the left and the right MFC patch, respectively,
and the doublesubscript n, m refers to the nth beam and the mth MFC
patch pair on the nth beam. To achieve a symmetric input voltage supply
of U, (1) € [-1000,1000] V a bias of U, = 500V is added to the input
voltage, such that the input voltage of each MFC patch pair is given by

Ur(h) = Uy £ U, ,(0) @

withne {1,...,N}andm € {1, ..., M, }, where N and M, are the num-
ber of carrier beams and the number of MFC patches on the nth beam,
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