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A B S T R A C T

Understanding the elastic properties of 2D triaxially braided composites (2DTBCs) is fundamental for further
analysis and design of structural components made from 2DTBCs. Based on a concentric cylinder model (CCM)
and the rule of mixture (RoM), we reformulated the global stiffness of 2DTBCs for the anisotropic carbon fiber
reinforcement to replace the currently available formulations for the isotropic glass fiber reinforcement with a
replacement scheme. First, the global stiffness calculated from CCM, Quek's model and Shokrieh's model was
compared for clarification. It was found that Shokrieh's model had the relatively worse performance under the
same conditions. Second, the performances of Shokrieh's model, CCM, Quek's model and CCM+RoM (Reuss-type
and Voigt-type) were compared using available experiments under various braiding configurations and our
experiments on the hybrid carbon/glass fiber reinforced 2DTBCs, which revealed that Quek's model and CCM
+RoM (Reuss-type) could yield equivalently great results, and CCM+RoM (Reuss-type) performed even better
in some cases.

1. Introduction

As representatives of lightweight materials with high stiffness and
strength, fiber-reinforced/braided materials have been widely in-
vestigated for their applications in the fields of aerospace, automotive,
military, energy, sports, etc. Generally, these materials include 2D [1–4]
and 3D [5–8] braided materials. The mechanical properties of braided
materials are of interest all the time and the modelling and application
of braided materials have been reviewed [9–11]. In some applications,
the elastic properties of 2D triaxially braided composites (2DTBCs)
have drawn much attention since it is fundamental for further in-
vestigations of the performance of structural components made from
2DTBCs, such as structural static [12,13] and dynamic [14,15] re-
sponses, failure analysis [16,17], damage propagation [18,19], etc. For
example, Masters et al. [20] firstly investigated the elastic properties of
2DTBCs experimentally, and built an analytical model based on the rule
of mixture (RoM). The effects of various braiding parameters, such as

braid angle, yarn size and axial yarn content, were tested for the elastic
properties of 2DTBCs [21]. However, the effect of the crimp angle of the
undulating fibers had been ignored. Using experiments, Phoenix [22]
demonstrated that the crimp angle could also influence the elastic
properties of the braided material as well as the braid angle. Usually, a
2DTBC consists of four constituents: one axial tow (i.e., yarn), two braid
tows and one matrix. The macroscopic stiffness of the 2DTBC is ob-
tained by the volume average of each constituent. For instance, based
on the unit cell, Byun [23] developed an analytical model to predict a
complete set of the engineering constants of a 2DTBC which was made
of carbon fiber reinforced polymer (CFRP). However, in this model, a
nontrivial geometric model must be established first to obtain the fiber
volume fractions, and the fiber packing fractions must be specifically
given or measured in advance. Yan and Hoa [24] used a similar geo-
metric model to obtain the fiber volume fractions and calculated the
global stiffness of 2DTBCs based on an energy model. Moreover, Quek
et al. [25] suggested to obtain the volume fractions of each constituent
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by computer aided design (CAD) tools, and they formulated an analy-
tical solution for the complete stiffness matrix of 2DTBCs with the
isotropic glass fiber reinforcement. On the contrary, Shokrieh and
Mazloomi [26] decomposed the 2DTBC into three layers with identical
thickness, including one layer of axial fibers with some matrix, and two
layers of braid fibers with some other matrix. The global stiffness of the
2DTBC was calculated as the direct summation of that in each layer.

It should be noted that Quek et al. [25], and Shokrieh and Mazloomi
[26] only calculated the global stiffness for 2DTBCs of glass fiber re-
inforced polymers (GFRPs), where the glass fibers were simply dealt
with as an isotropic phase. Moreover, Quek et al. [25] provided four
elastic constants (longitudinal Young's modulus E11, longitudinal Pois-
son's ratio ν12, longitudinal shear modulus G12, and transverse shear
modulus G23) of the local stiffness of the transversely isotropic axial tow
through a concentric cylinder model (CCM) [27–29], with the fifth
constant (transverse Young's modulus E22) obtained through a modified
version of RoM [25]. On the other hand, the result from Shokrieh's
model [26] seemingly agreed better with the experiments [25] than
that from Quek's model [25]. However, the assumptions on the volume
fractions and geometrical properties of the undulating tows in Shok-
rieh's model were different from those of the experiments. Thus,
Shokrieh's model needs to be further validated in details. To clarify the
above issues, the global stiffness of GFRP-2DTBCs from Shokrieh's
model will be recalculated with the correct volume fractions of each
tow for the comparison with the experiments and Quek's model.

Furthermore, since Quek's model was essentially a mixed form of
CCM and a modified version of RoM, it would be interesting to compare
Quek's model with CCM. In this case, we calculated and compared the
global stiffness of the CFRP-2DTBC from CCM, Quek's model and CCM
+RoM (Reuss-type and Voigt-type) with the available experiments [30]
under different braiding configurations and our experiments on the
hybrid carbon/glass fiber reinforced 2DTBCs as well. It turned out that
Quek's model and CCM+RoM (Reuss-type) performed the best, and
CCM+RoM (Reuss-type) was surprisingly better in some cases. This
unexpected result will be discussed in details in this work. In addition,
based on a replacement scheme [31,32], all models mentioned in this
work were reformulated for the anisotropic carbon fiber reinforcement
instead of the isotropic case used for the GFRP-2DTBC, e.g., that in the
original CCM and Quek's model, so that the global stiffness of CFRP-
2DTBC can be directly calculated for other purposes, e.g., static ana-
lysis, dynamic or impact analysis and strength analysis [16,33,34].

2. Methodology

The analysis of the 2DTBC is usually based on a representative unit
cell (RUC), as shown in Fig. 1. The axis-1 denotes the direction of the
axial tow, the axis-2 is the transverse direction and the axis-3 is vertical
to the plane of the 2DTBC. First, the 2DTBC is considered to consist of
four constituents, one axial tow, two braid tows and one matrix (Fig. 2).
Each tow is composed of a group of fibers and some amount of binding

matrix, which is closely attached to the fibers. Since only the elastic
properties of the 2DTBC are considered here, the fibers and matrix are
assumed to be perfectly bonded and all interfaces are considered to be
coherent. The stiffness of each tow should be determined first. For most
cases [23–26], the stiffness of the axial tow is calculated in advance
because this tow can be simply assumed to be straight. For the GFRP-
2DTBC, both the original CCM and Quek's model have formulated the
five independent elastic constants of the local stiffness of the trans-
versely isotropic axial tow. For the CFRP-2DTBC, the axial tow is also
considered to be transversely isotropic and the five elastic constants can
be obtained by a replacement scheme [31,32]. Thus, we will progres-
sively formulate the macroscopic elastic properties of CFRP-2DTBC in
the following sections. Also, we will review Quek's model and Shok-
rieh's model, to notify their different points in Sections 2.2 and 2.4,
respectively.

2.1. Local stiffness of CCM

In the original CCM, the five elastic constants are transverse bulk
modulus k23, longitudinal Young's modulus E11, longitudinal Poisson's
ratio ν12, longitudinal shear modulus G12, and transverse shear modulus
G23. The first four are based on the two-phase CCM [28,29]. Here, we
rewrote them for the CFRP-2DTBC instead of the isotropic case of the
GFRP-2DTBC in the original CCM and Quek's model by a replacement
scheme [31,32] (Isotropic matrix is always assumed):
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where V is the volume fraction, + =V V 1f m , where the local fiber vo-
lume fraction Vf is also called the fiber packing fraction [23,24], k is the
transverse bulk modulus, E is the Young's modulus, ν is the Poisson's
ratio, and G is the shear modulus. Subscripts m and f represent the
matrix and fiber, respectively.

In Fig. 3, the original two-phase CCM assumes that any transverse
sections of the axial and braid tows are filled with composite cylinders
of different radii, in which the fiber volume fractions and cylinder
properties are the same. It requires that the absolute size of the fibers
must vary down to infinitesimal to achieve the volume filling config-
uration. Unfortunately, transverse shear modulus or transverse Young's
modulus cannot be derived due to the boundary conditions [28].
However, by combining with the generalized self-consistent method,
Christensen [27] extended the original two-phase CCM into a three-
phase CCM, and the transverse shear modulus were solved through a
quadratic equation:
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The coefficients in the quadratic equation were given as:
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Fig. 1. A representative unit cell as shown in the black-line box of 2DTBC with
braid angle α
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