Unified convergence analysis of frozen Newton-like methods under generalized conditions

Ioannis K. Argyros ${ }^{\text {a }}$, Santhosh George ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA
${ }^{\mathrm{b}}$ Department of Mathematical and Computational Sciences, NIT, Karnataka, 575025, India

A R TICLE INFO

Article history:

Received 12 September 2017
Received in revised form 19 June 2018

MSC:

49D15
65G19
47 H 17
65H10

Keywords:

Banach space
Frozen Newton-like method
Local and semi-local convergence
Generalized Lipschitz conditions

Abstract

The objective in this article is to present a unified convergence analysis of frozen Newtonlike methods under generalized Lipschitz-type conditions for Banach space valued operators. We also use our new idea of restricted convergence domains, where we find a more precise location, where the iterates lie leading to at least as tight majorizing functions. Consequently, the new convergence criteria are weaker than in earlier works resulting to the expansion of the applicability of these methods. The conditions do not necessarily imply the differentiability of the operator involved. This way our method is suitable for solving equations and systems of equations. Numerical examples complete the presentation of this article.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathcal{X} and \mathcal{Y} be Banach spaces and let \mathcal{D} be a subset of \mathcal{X}. We denote by $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ the space of all bounded linear operators from \mathcal{X} into \mathcal{Y}. Let $F: \mathcal{D} \subset \mathcal{X} \longrightarrow \mathcal{Y}$ be a continuous nonlinear operator. Consider the equation

$$
\begin{equation*}
F(x)=0 \tag{1.1}
\end{equation*}
$$

The task of obtaining a locally unique solution p of equation $F(x)=0$ is very important. Indeed, using mathematical modeling [1-3] numerous problems in optimization, control theory, inverse theory, Mathematical physics, Chemistry, Biology, Economics and also in Engineering, can be made to look like equation $F(x)=0$ defined on suitable abstract spaces. It is desirable to find p in closed form. However, this task can be achieved only in special cases. That explains why most researchers resort to iterative methods which generate a sequence converging to p under certain conditions.

It is well known [2] that under suitable conditions, Newton's method defined for each $n=0,1,2, \ldots$ by

$$
\begin{equation*}
x_{n+1}=x_{n}-F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right), \tag{1.2}
\end{equation*}
$$

where $x_{0} \in \mathcal{D}$ is an initial point provides a quadratically convergent iteration $\left\{x_{n}\right\}$ for solving Eq. (1.1). But, there is a plethora of problems that for some reasons, Newton's method cannot apply in its original form. A case of interest occurs when the derivative is not continuously invertible, as for instance, when dealing with small divisors [4]. That is why numerous

[^0]authors have proposed variants of Newton's method which converge under Lipschitz-type conditions provided that certain Kantorovich-type criteria are satisfied.

In this article, we study the unifying class of frozen Newton-like methods defined for each $n=0,1,2, \ldots$ by

$$
\begin{equation*}
x_{n+1}=x_{n}-L\left(y_{t_{n}}\right)^{-1} F\left(x_{n}\right) \tag{1.3}
\end{equation*}
$$

where x_{0} is an initial point, $L():. \mathcal{D} \longrightarrow \mathcal{L}(\mathcal{X}, \mathcal{Y}), t_{n}$ is a nondecreasing sequence of integers satisfying the conditions

$$
\begin{equation*}
t_{0}=0, t_{n} \leq n \text { for each } n=0,1,2, \ldots \tag{1.4}
\end{equation*}
$$

and $y_{t_{n}}$ is the highest indexed point $x_{0}, x_{1}, \ldots, x_{t_{n}}$ for which $L\left(y_{t_{n}}\right)^{-1}$ exists. Suppose that $L\left(x_{0}\right)^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$. It is well known that from the numerical efficiency point of view, it is not advantageous to change the operator $L\left(y_{t_{n}}\right)^{-1}$ at each step of the iterative method. We obtain more efficient iterative methods, if we keep this operator piece wise constant. According to the dimension of the space optimal methods can be obtained [3]. Many popular methods can be obtained from method (1.3) with an appropriate choice of the sequence $\left\{t_{n}\right\}$ for each $n=0,1,2 \ldots$:

SINGLE POINT METHODS:

Newton's method (1.2):

$$
t_{n}=n, L\left(y_{t_{n}}\right)=F^{\prime}\left(x_{n}\right)
$$

Modified Newton's method:

$$
\begin{aligned}
x_{n+1}= & x_{n}-F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{n}\right), \\
t_{n}=0, & L\left(y_{t_{n}}\right)=F^{\prime}\left(x_{0}\right)
\end{aligned}
$$

Stirling's method for the equation $G(x)=x, \mathcal{X}=\mathcal{Y}$ and $F(x)=x-G(x)$:

$$
\begin{aligned}
x_{n+1}= & x_{n}-F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right), \\
t_{n}=n, & L\left(y_{t_{n}}\right)=F^{\prime}\left(x_{n}\right)
\end{aligned}
$$

Picard's method [5]:

$$
\begin{array}{r}
x_{n+1}=x_{n}-F\left(x_{n}\right), \\
t_{n}=n, \quad L\left(y_{t_{n}}\right)=I,
\end{array}
$$

where I is the identity operator on \mathcal{X} and $\mathcal{X}=\mathcal{Y}$.
Traub method: $t_{k m+j}=k m, j=0,1, \ldots, m-1, k=0,1,2, \ldots$ Then, method (1.3) reduces to an iterative method studied by Traub [3]. The parameter m is chosen according to the dimension of the space in order to maximize the numerical efficiency of the method [6].

TWO POINT METHODS:

We can write method (1.3) in the form

$$
\begin{equation*}
x_{n+1}=x_{n}-L\left(y_{s_{n}}, y_{t_{n}}\right)^{-1} F\left(x_{n}\right) \tag{1.5}
\end{equation*}
$$

where $L()=.L\left(y_{s_{n}},.\right): \mathcal{D} \longrightarrow \mathcal{L}(\mathcal{X}, \mathcal{Y}), s_{n}$ is a nondecreasing sequence of integers satisfying the conditions

$$
\begin{equation*}
s_{0}=-1, s_{n} \leq t_{n} \leq n \text { for each } n=1,2, \ldots \tag{1.6}
\end{equation*}
$$

Secant method:

$$
\begin{aligned}
x_{n+1} & =x_{n}-\left[x_{n-1}, x_{n} ; F\right]^{-1} F\left(x_{n}\right), \\
s_{n} & =n-1, t_{n}=n,[., . ; F]: \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{L}(\mathcal{X}, \mathcal{Y})
\end{aligned}
$$

is a consistent approximation of the Fréchet derivative F^{\prime} of F and $L\left(y_{s_{n}}, y_{t_{n}}\right)=\left[x_{n-1}, x_{n} ; F\right]$.

Modified secant method:

$$
\begin{aligned}
x_{n+1} & =x_{n}-\left[x_{-1}, x_{0} ; F\right]^{-1} F\left(x_{n}\right) \\
s_{n} & =-1, t_{n}=0, \text { for each } n=0,1,2, \ldots
\end{aligned}
$$

and $L\left(y_{s_{n}}, y_{t_{n}}\right)=\left[x_{-1}, x_{0} ; F\right]$.

Traub method [3]:

$s_{k m+j}=k m-1, t_{k m+j}=k m, s_{-1}=s_{0}=-1, j=0,1,2, \ldots, m-1, k=0,1,2, \ldots$ Then, method (1.5) reduces to a procedure considered by Traub for scalar equations [3].

https://daneshyari.com/en/article/10138833

Download Persian Version:
https://daneshyari.com/article/10138833

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: iargyros@cameron.edu (I.K. Argyros), sgeorge@nitk.ac.in (S. George).

