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a b s t r a c t

Time-varying nonlinear optimization (TVNO) problems are considered as important issues
in various scientific disciplines and industrial applications. In this paper, the continuous-
time derivative dynamics (CTDD) model is developed for obtaining the real-time solutions
of TVNO problems. Furthermore, aiming to remedy the weaknesses of CTDD model, a
continuous-time zeroing dynamics (CTZD) model is presented and investigated. For po-
tential digital hardware realization, by using bilinear transform, a general four-step Zhang
et al discretization (ZeaD) formula is proposed and applied to the discretization of both
CTDD and CTZD models. A general four-step discrete-time derivative dynamics (general
four-step DTDD) model and a general four-step discrete-time zeroing dynamics (general
four-step DTZD) model are proposed on the basis of this general four-step ZeaD formula.
Further theoretical analyses indicate that the general four-step DTZDmodel is zero-stable,
consistent and convergent with the truncation error of O(g4), which denotes a vector
with every entries being O(g4) with g denoting the sampling period. Theoretical analyses
also indicate that the maximal steady-state residual error (MSSRE) has an O(g4) pattern
confirmedly. The efficacy and accuracy of the general four-step DTDD and DTZD models
are further illustrated by numerical examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In numerous scientific disciplines and industrial applications, time-varying optimization problems have been widely
encountered, and such problems are fundamental and essential [1–10]. Since nonlinear optimization is an important
subtopic of optimization problems, researches on this are abundant andmany of which have been applied in the engineering
fields such as system control [11–13] and signal processing [14–17]. Various algorithms have been proposed and analyzed
for nonlinear optimization problems solving [10–27]. For example, in [11], a decomposition scheme is proposed to solve
parametric non-convexprograms. Such a scheme consists of a fixednumber of proximal linearized alternatingminimizations
and adual update per time step. Theproposed approach is attractive in a real-timedistributed context and theperformance of
the optimality-tracking scheme can be enhanced via a continuation technique. In [13], a self-triggered algorithm is presented
to solve a class of convex optimization problemswith time-varying objective functions. The algorithm predicts the temporal
evolution of the gradient by using known upper bounds on higher order derivatives of the objective function. The method
guarantees convergence to arbitrarily small neighborhood of the optimal trajectory in finite time and without incurring
Zeno behavior. In [17], based on prediction and correction steps, Simonetto et al. proposed two algorithms with a discrete
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time-sampling scheme. Considering the correction step consists either of one or multiple gradient steps or Newton steps,
the two algorithms are termed gradient trajectory tracking (GTT) and Newton trajectory tracking (NTT) algorithms. The two
algorithms behave as O(g2) and in some cases as O(g4) with g denotes the sampling period. Furthermore, in [16], online
algorithms are developed to track solutions of time-varying constrained optimization problems. Resembling workhorse
Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction–correction steps to
provably track the trajectory of the optimal solutions of time-varying convex problems and improve the convergence speed
of existing prediction–correction methods when applied to unconstrained problems. However, most of these algorithms
and methods are dedicated in solving static nonlinear optimization problems, which means that they may not possess the
capability of handling time-varying nonlinear optimization (TVNO) problems [20–22]. The main difference between TVNO
problems and static nonlinear optimization problems is evidently that TVNO problems change with time. This difference
makes the time derivative play an important role in obtaining accurate real-time solutions for TVNO problems.

Traditional numerical algorithms such as the Newton–Raphson iteration (NRI) and other methods [10,18–20] are
designed intrinsically for static optimization. Generally speaking, these methods are under the assumption that the
optimization problems do not change during the computational time. Thus, the calculated solutions are directly used in
the optimization problems after the calculation. Comparing to the traditional numerical algorithms, the neural dynamical
approach is superior because of the potential real-time application advantages such as self-adaption, parallel processing,
distributed storage and hardware applications [28,29]. In this paper, the derivative dynamics approach is exploited as an
intuitive one while the zeroing dynamics approach is exploited for potential predictive power [30–32]. More specifically
speaking, a continuous-time derivative dynamics (CTDD) model and a continuous-time zeroing dynamics (CTZD) model are
generalized, developed and investigated for TVNO problems.

For potential digital hardware realization, it is necessary to discretize the continuous-time dynamicsmodels. Fortunately,
a new class of finite-difference methods and formulas termed Zhang et al. discretization (ZeaD) has been proposed, named
and applied by Zhang et al. since 2014 after nearly 8-year search and preparation [33]. It is worth pointing out that ZeaD
formulas can be used for stable, convergent and accurate discretization of neural dynamics (i.e., derivative dynamics and
zeroing dynamics) and other continuous-time ordinary differential equation (ODE) systems [33].

The rest of this paper consists of five sections. Section 2 presents the general formulation of nonlinear optimization. Then
the CTDD model is developed. Since the performance of CTDD model is related to the initial state and perturbations, the
CTDD model may not solve TVNO problems in a robust manner. Aiming to remedy this weakness, a CTZD model is then
developed. In Section 3, for potential digital hardware realization, a general four-step ZeaD formula is proposed for the
discretization of the CTDD and CTZD models. The design procedure is also presented in Section 3. The design procedure
guarantees that the general four-step ZeaD formula is zero-stable, consistent and convergent with the truncation error
of O(g3). Based on the general four-step ZeaD formula, the CTDD and CTZD models, the general four-step discrete-time
derivative dynamics (general four-step DTDD) model and discrete-time zeroing dynamics (general four-step DTZD) model
are proposed, respectively. Then in Section 4, further theoretical analyses are conducted, and the characteristics of the
proposed general four-step DTZD model are investigated. We further find out that the general four-step DTZD model
has a truncation error of O(g4), which denotes a vector with every entries being O(g4), and that its maximal steady-state
residual error (MSSRE) also has an O(g4) pattern. Furthermore, numerical results of TVNO examples illustrate the efficacy
and accuracy of the proposed DTDD and DTZD models in Section 5. Finally in Section 6, the conclusion along with the final
remarks of this paper is presented. Before proceeding, a summarization of the main contributions of this paper is worth
listing out.

(1) For the first time, by using bilinear transform, a general four-step ZeaD formula having O(g3) truncation error is
proposed and investigated in this paper. Such a general four-step formula can be used for the stable, convergent
and accurate discretization of neural dynamics and other continuous-time ODE systems.

(2) By adopting the general four-step ZeaD formula to discretize CTDD and CTZDmodels, the general four-step DTDD and
DTZDmodels are proposed in this paper. Both general four-step discrete-time dynamicsmodels solve TVNO problems
successfully. Note that the general four-step DTDDmodel is sensitive to the initial state and shows a residual error of
O(g2), and the general four-step DTZD model is robust and has a residual error of O(g4).

(3) The stability and convergence results of the general four-step DTZD model for TVNO problems solving are proved,
with the MSSRE of the model having an O(g4) pattern.

(4) Numerical experimental results synthesized by the general four-step DTDD and DTZD models are presented, which
further substantiate the efficacy and accuracy of the general four-step DTDD and DTZD models. These results
collaborate well with the theoretical analyses.

2. Problem formulation, continuous-time models and general ZeaD formula

In this section, the problem formulation of TVNO is presented for further investigation. Based on this problem formulation,
the CTDD model and CTZD model are developed. Then, the general ZeaD formula is presented to lay the foundation of the
general four-step ZeaD formula.
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