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Selective Frequency Damping (SFD) is a popular method for the computation of globally 
unstable steady-state solutions in fluid dynamics. The approach has two model parameters 
whose selection is generally unclear. In this article, a detailed analysis of the influence 
of these parameters is presented, answering several open questions with regard to the 
effectiveness, optimum efficiency and limitations of the method. In particular, we show 
that SFD is always capable of stabilising a globally unstable systems ruled by one unsteady 
unstable eigenmode and derive analytical formulas for optimum parameter values. We 
show that the numerical feasibility of the approach depends on the complex phase angle 
of the most unstable eigenvalue. A numerical technique for characterising the pertinent 
eigenmodes is presented. In combination with analytical expressions, this technique allows 
finding optimal parameters that minimise the spectral radius of a simulation, without 
having to perform an independent stability analysis. An extension to multiple unstable 
eigenmodes is derived. As computational example, a two-dimensional cylinder flow case 
is optimally stabilised using this method. We provide a physical interpretation of the 
stabilisation mechanism based on, but not limited to, this Navier–Stokes example.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Understanding fluid flow instabilities is of fundamental importance for laminar-turbulent transition and for flow control. 
Flow instabilities can be characterised through linear stability analysis, for which it is necessary to obtain an accurate 
representation of the laminar base flow solution [1,2]. Letting f be the non-linear Navier–Stokes operator applied to a state 
variables q vector, with adequate boundary and initial conditions, the Navier–Stokes equations can be written as

q̇ = f (q), (1)

where the dot expresses the time derivative. The steady state of eq. (1) satisfies q̇s = f (qs) = 0. The stability approach relies 
on decomposing the instantaneous flow field into the base flow qs plus a time-dependent infinitesimally small perturbation 
field q′ such that, in a two-dimensional space,

q(x, t) = qs(x) + εAq′(x, t), 0 < εA � 1, (2)
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where x represents the spatial coordinates and t the time [2,3]. Stability analysis requires an accurate solution of the base 
flow as the stability properties critically depend on its spatial derivatives.

The difficulty in computing time-independent Navier–Stokes solutions arises for globally unstable flow fields, inasmuch 
as the instantaneous flow naturally diverges from the steady state [4]. To overcome this obstacle, mainly two numerical 
methods are employed in the literature: Newton iteration methods [5] are the classical approach; however, these methods 
may have severe practical limitations due to the sensitivity to the initial guess and the required computational cost for large 
and strongly nonlinear systems [6,7]. In the past years, the Selective Frequency Damping (SFD) method developed by Åkervik 
et al. [4] has arisen as a solid alternative. Its robustness and ease of implementation into existing time-stepping methods 
have made it increasingly popular to the point that it is generally the preferred method for aeronautical applications [8].

Based on control theory, SFD adds a linear forcing term to eq. (1), which drives the flow field q towards qs [4]. As this 
target solution is not known beforehand, qs is substituted by a low-pass filtered version of q, denoted by q̄. The evolution 
equation for q is then rewritten as

q̇ = f (q) − χ(q − q̄), χ ∈R
+. (3)

The forcing is a linear reaction term proportional to the high-frequency content of the flow. Its effectiveness in quenching 
unstable frequencies and hence suppressing the associated instabilities depends on the feedback control coefficient χ . Åk-
ervik et al. [4] suggest an exponential kernel filter to compute q̄. Since the implementation of the integral formulation of the 
filter would generally imply infeasible memory requirements in practice, its differential formulation is considered instead:

˙̄q = q − q̄

�
, � ∈R

+. (4)

The time constant � is related to the cut-off frequency (ωc ) of the low-pass filter through � = 1/ωc . The performance 
of SFD depends on the two aforementioned parameters of the model, χ and �, which must be chosen as inputs of the 
simulation. Appropriate values depend on the flow problem and hence their selection is key to the method’s effectiveness 
and efficiency as they determine the stability and convergence rate [4,6,9,10]. Not every combination of χ and � guarantees 
that the flow field is driven towards the steady state, and even if so, the required computational time may be so large that 
the approach is impractical. Hence, how to select adequate χ and � is a common predicament in the literature.

SFD has nonetheless been very successfully applied to two- and three-dimensional flow configurations: Åkervik et al. [4]
first applied the method for stabilising a separation bubble with success and the steady solution of a confined separated 
flow was obtained by Åkervik et al. [11]. Pier [12] computed the base flow around a sphere to analyse local and global 
instabilities developing in the wake. Schmid [13] analysed the stability of the flow in a square cavity by using a reference 
solution computed with SFD. Bagheri et al. [14] successfully applied SFD to stabilise a jet in crossflow and Fani et al. [15]
found the base flow for a three-dimensional T-mixer. Loiseau et al. [16] studied roughness-induced transition by performing 
stability analyses using base-flow solutions computed with SFD. More recently, Richez et al. [8] applied SFD to stabilise 
RANS simulations of the turbulent separated flow around an airfoil at stall and Kurz and Kloker [17] computed with SFD 
the steady state of a three-dimensional boundary layer over a swept wing with roughness elements. Significant contributions 
to the advancement of the methodology where published by Jordi et al. [9], who developed an alternative SFD formulation, 
and Cunha et al. [6], who developed an optimisation method for SFD simulations based on Dynamic Mode Decomposition 
(DMD).

The model parameters χ and � are commonly based on rough estimations introduced by Åkervik et al. [4] or on 
parametric studies of simplified models. Jordi et al. [9,10] used a scalar model problem to infer the behaviour of SFD 
when applied to a real flow problem. By using this model, Jordi et al. [9] generate stability curves identifying the influ-
ence of χ and � and indicate that SFD is incapable of stabilising steady unstable eigenmodes, corroborating the results of 
Vyazmina [18]. It was observed that increasing χ may not always guarantee convergence, contrary to the consensus intro-
duced by Åkervik et al. [4]. Jordi et al. [10] hypothesised that the parameter values that optimise the scalar model problem 
also optimise the full flow problem and developed a coupled approach, which combines the computation of partially con-
verged flow fields, stability analyses and parameter optimisation for the model problem. Cunha et al. [6] use DMD of the 
controlled flow field to determine parameters that minimise the growth rate of the least stable DMD mode.

There are cases in which SFD reportedly failed [18,19]. It was claimed that cases in which the flow field presents steady 
unstable eigenmodes, SFD is unable to drive the simulation towards the steady state. Several authors indicate that too large 
χ yield infeasible simulation times [4,6,19]. Massa [20] and Teixeira and Alves [7] reported that stabilising a flow field 
that is unstable to more than one eigenmode can be a challenging task. In particular, Massa [20] claimed that SFD fails to 
converge towards the base flow if unstable eigenvalues with high amplification rates and low-frequency weakly unstable 
eigenvalues are both present in the flow field. In conclusion, a better understanding of χ and � is required to establish the 
feasibility of the method in the first place.

In this paper, the role played by χ and � is analysed in detail. We aim to answer the main open question presented by 
literature:

Which values of χ and � are effective and most efficient?
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