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This work is concerned with computing nonlinear eigenpairs, which model solitary waves 
and various other physical phenomena. We aim at solving nonlinear eigenvalue problems 
of the general form T (u) = λQ (u). In our setting T is a variational derivative of a convex 
functional (such as the Laplacian operator with respect to the Dirichlet energy), Q is an 
arbitrary bounded nonlinear operator and λ is an unknown (real) eigenvalue. We introduce 
a flow that numerically generates an eigenpair solution by its steady state.
Analysis for the general case is performed, showing a monotone decrease in the convex 
functional throughout the flow. When T is the Laplacian operator, a complete discretized 
version is presented and anlalyzed. We implement our algorithm on Korteweg and de Vries
(KdV) and nonlinear Schrödinger (NLS) equations in one and two dimensions. The proposed 
approach is very general and can be applied to a large variety of models. Moreover, it is 
highly robust to noise and to perturbations in the initial conditions, compared to classical 
Petiashvili-based methods.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear elliptic equations arise in various problems in physics, e.g. for stationary solutions of equations, such as Bose–
Einstein condensates (BEC), nonlinear Schrödinger (NLS) and Korteweg and de Vries (KdV) [1]. In this work we focus on nonlinear 
problems of the form,

T (u) = λQ (u), (1)

where u is a function in a Banach space U , and T and Q are (possibly) nonlinear operators. More specifically, we assume 
T to be a subgradient of a convex, proper, lower-semi-continuous functional J ,

T (u) ∈ ∂u J (u), (2)

where ∂u J (u) denotes the subdifferential of J (u). On the right-hand-side of (1), Q : U → U is a bounded (possibly) nonlin-
ear operator. We refer to functions u which admit (1) as eigenfunctions, with a corresponding eigenvalue λ ∈ R. Our aim is 
to find a pair (u, λ) ∈ U ×R that admits (1), referred to as an eigenpair.
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Eigenpairs of nonlinear operators appear in various fields of science and engineering. Their analysis can provide deeper 
understanding and significant insights related to nonlinear systems. Nonlinear eigenvalue analysis is an active field of re-
search, from both a theoretical and a computational perspective. In some nonlinear problems, such as [2] the underlying 
operators are linear but the dependency on λ is nonlinear. A recent review of such nonlinear eigenvalue problems (NEP) appear 
in [3]. These studies are part of a different branch of problems (not in the scope of this paper). We examine solutions which 
can be formulated by Eq. (1), where the eigenvalue is linearly dependent. We summarize below the main related studies.

1.1. Solitary waves as solutions of nonlinear eigenvalue problems

A pioneering work in this field, which was followed by many, is that of Petviashvili [4]. It was aimed at finding numerical 
approximations of stationary solutions for the Kadomtsev–Petviashvili equation with positive dispersion (KPI equation). The 
method, originally, was develop to obtain stationary solutions of wave equations of the form

−Mu + up = 0, (3)

where M is a positive, self-adjoint operator and p is a constant. We note that M should be invertible, as the iterative 
procedure is based on its inversion. Conditions for the convergence of Petviashvili’s method were established in [5]. The 
approach of Petviashvili was later generalized and applied to a family of nonlinear problems, such as [6–9]. However, all 
these algorithms assume M is invertible. Moreover, it is not aimed at finding eigenpairs, but at solving a more restricted 
problem. When casted within the formulation of (1), the eigenvalue is set to a unit value (λ = 1). Our proposed method 
is based on a forward flow, and hence M is not require to be invertible. Moreover, it is aimed at finding eigenpairs, of 
unknown λ. The resulting eigenpair is related to an initial condition, provided by the user, which can emerge from noisy 
experimental data, for instance.

Yang and Lakoba [7,10,11] generalized Petviashvili’s iteration method, accelerated the inverse power method and used 
modified conjugate gradient to find solitary waves. In [12] it was suggested to combine the conjugate gradient method with 
accelerated inverse power method into a unified algorithm, which coincides with Petviashvili’s method for small enough 
error. This method was shown to provide fast convergence rates. In our work we compare the numerical results to this 
method and to a modified version of it for adaptively computing eigenpairs. The focus of this paper is on the robustness of 
the methods, rather than on the convergence rate. We note that our forward flow requires considerably more iterations to 
converge, compared to algorithms based on inversion. However, it is much more stable and general.

1.2. Variational formulations of eigenpair problems

Eigenvalue problems are often analyzed theoretically and solved numerically based on energy minimization methods. 
Within a variational setting, it can be shown that an eigenpair is an extremum of a generalized Rayleigh quotient [13]. This 
extends in a natural manner to the linear case, where any eigenvector v of a Hermitian matrix A, admitting Av = λv , is 
an extremal point of the associated Rayleigh quotient R(v) = (v∗ Av)/(v∗v) = λ, where v∗ is the conjugate transpose of v . 
The studies of [14–17] aim at finding a minimum (or a local minimum) of an energy functional associated to the eigenvalue 
problem. In [14,15] a constrained steepest descent is used for solving ground states of BEC. Alternative approaches, such as 
[16,17], are based on constrained energy minimization techniques with a suitable Lagrange function. In the above cases, both 
sides of the eigenvalue problem (1) should have an associated energy. This puts some limitations on the variety of problems 
that can be solved. In our work this restriction is relaxed (so only the operator T is associated with an energy term).

1.2.1. Eigenpairs associated with total variation
The total variation (TV) functional, J T V = ∫ |∇u(x)|dx, has been thoroughly investigated in recent decades [18]. Since 

its introduction to the image processing field for denoising and deconvolution by [19], it has been used as an edge pre-
serving regularizer for algorithms related to stereo imaging, optical flow, segmentation and many other computer vision 
tasks [20]. Eigenpairs associated with TV were investigated in [21] and [22]. It was shown that convex disk-like shapes are 
eigenfunctions of the nonlinear eigenvalue problem

T (u) = λu, T (u) ∈ ∂u J T V (u),

where ∂u J T V (u) is the subdifferential of TV. For smooth, non-vanishing gradient, we have ∂u J T V (u) = −div(∇u/|∇u|), 
which is the 1-Laplacian operator. In recent years, a theory of nonlinear transforms for one-homogeneous functionals has 
been formulated [23–25]. It is based on the analysis of nonlinear eigenvalue problems. The work of [26] proposed a flow 
for finding eigenfunctions of one-homogeneous functionals, and is described in more detail below. Numerical methods 
for finding p-Laplacian eigenpairs were proposed in [27] and [28]. Solutions of semilinear elliptic eigen-problems were 
presented in [1]. Ground states of generalized eigenvalue problems, which may involve also a smoothing kernel, were 
analyzed in [29]. An iterative algorithm for finding nonlinear eigenpairs by an extended inverse-power method was proposed 
by [30]. All of these methods are based partially or mostly on the fact that the eigenpair satisfies an extremum of the 
associated (generalized) Rayleigh quotient.

Our work generalizes the flow of [26]. It goes beyond the variational setting and allows the nonlinear operator Q in 
Eq. (1) to be very general.
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