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1. Introduction

We study positive singular solutions of the following equation of porous medium type:
v =A™, y € R®\ {&(t)}, t>0, (1.1)
where m > 0 and £ € C*([0,0); R™) is a given function. We consider (1.1) with the initial condition
v(y,0) =wo(y),  yeR"\{£(0)}. (1.2)
We are interested in positive solutions that are singular at £(¢), that is,

v(y,t) = oo asy — £(t), t>0.
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For example, when £ = 0 and n > 3, (1.1) has a singular steady state given by

_n-2
i(y) =Ky~ ™, yeR"\{0},
where K is an arbitrary positive constant. Another explicit solution for £ = 0 and
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If m = 1, (1.1) is reduced to the linear heat equation. From [8] it follows that for every nonnegative

is

solution v of
vy = Av, y e R"\ {&(t)}, te(0,1),
there is a nonnegative Radon measure M on (0,7) such that
vy = Av + (0p(y) @ M(t)) o Te¢ in D'(R™ x (0,7)).

Here dy is the Dirac delta-function concentrated at 0 € R™ and 7¢ is a translation operator defined by
Te(p)(y,t) = @(y + £(t),t). Moreover, let DM € L] ((0,T)) be the Radon-Nikodym derivative of the
absolutely continuous part of M with respect to the Lebesgue measure. Then v satisfies

v(y,t) = DM@)F(y — £(t)) + o(F(y — £(1)))

as y — £(t) for almost all ¢ € (0,7T), where F is the fundamental solution of Laplace’s equation in R™. For
the existence of singular solutions, see [7,18]. See also [8,9,15-17,19] for semilinear heat equations, and [10]
for the Navier—Stokes system.

In [2], for 0 < m < 1 and n > 2, one can find a complete classification of nonnegative solutions of
vy = Av™ in D'((R™\ {0}) x (0, 00)) which are continuous in R™ x [0, c0) with values in (0, oo, unbounded

at y = 0, and satisfy the initial condition
v(y,0) =0, y € R™\ {0}. (1.3)
In some sense, these solutions are either of the same type as V or there is 7 € (0, 00] such that they satisfy
vy = Av™ + 8 (y) @ M (t) in D'(R" x (0,7)),

for some positive Radon measure M, while they are of type V for ¢t > 7. If m. < m < 1 and M (t) = t° for
some o € [0,m/(1 —m)], then the solution is of the self-similar form
_ 2042—n m—o(l—m)
() =t f(yt ™), =—— fi=
vy t) fwt™) “ n(m—1)+2 p n(im—1)+2
where [ satisfies an elliptic equation, see [2]. For 0 < m < mg, n > 3, there are also self-similar solutions
with a standing singularity, see [6,20].

If m¢ < m < 1 then all weak solutions of v; = Av™ with locally integrable initial data vy become
immediately bounded and continuous, see [5]. On the other hand, in the same range m. < m < 1, the
strongly singular set of vy cannot shrink in time for extended continuous solutions, see [3]. Here the strongly
singular set of vy is defined as the set of points at which vy is not locally integrable and an extended
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