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h i g h l i g h t s

• LDCCA method is proposed to quantify temporal characteristics of coupled time series.
• The performance of LDCCA is validated with typical non-stationary time series.
• The LDCCA is used to uncover the local evolution dynamics of gas–liquid churn flows.
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a b s t r a c t

We propose a method called local detrended cross-correlation analysis (LDCCA) to quan-
tify temporal power-law cross-correlation characteristics of coupled time series at local
samples. The proposed method is validated with uncoupled Gaussian white noises, cou-
pled ARFIMA processes and Hénon maps. As an example, electrical probe technologies
are employed to detect the flow structure information of gas–liquid churn flows in a
vertical pipe, and temporal cross-correlation characteristics of flow interfacial structures
are investigated using the proposed LDCCA. The results show that the proposed LDCCA
can provide beneficial insights to local dynamic evolution behaviors of the flow interfacial
structures.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since complex systems always consist of interacting constituents with a coupling relationship, the cross-correlation
analysis of these constituents is beneficial to diagnose and understand the whole system. Analysis of a power-law cross-
correlation between various time series has become a popular topic [1–4]. Podobnik and Stanley [5] first proposed a
method of detrended cross-correlation analysis (DCCA) to investigate the power-law cross-correlation between different
simultaneously recorded time series. The DCCA shows a good performance in quantifying a power-law cross-correlation of
different time series even in the presence of non-stationary periodic trends [6,7]. Kristoufek [8–10] theoretically analyzed
the relationship between bivariate Hurst exponent and separate Hurst exponents, and attempted to provide interpretation
and practical implication of the bivariate Hurst exponent.

Importantly, Zebende et al. [11,12] proposed a DCCA cross-correlation coefficient to quantify cross-correlation level of
coupled time series. The DCCA has been widely used in various fields, as in climatology [13,14], finance [15–19], neuro-
science [20], traffic [21], turbulent flow [22] and others. Meanwhile, selected scholars paid their attention to multifractal
detrended cross-correlation analysis [23–25]. The development of DCCA has motivated others in introducing alternative
methods such as the detrendingmoving-average cross-correlation analysis (DMCA) [26–28] and the height cross-correlation

∗ Corresponding author.
E-mail address: lszhai@tju.edu.cn (L.-S. Zhai).

https://doi.org/10.1016/j.physa.2018.09.006
0378-4371/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2018.09.006
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2018.09.006&domain=pdf
mailto:lszhai@tju.edu.cn
https://doi.org/10.1016/j.physa.2018.09.006


L.-S. Zhai, R.-Y. Liu / Physica A 513 (2019) 222–233 223

analysis (HXA) [29]. Based on the DCCA, the DMCA and the HXA, Kristoufek [30] proposed three power-law coherency
parameters for studying power-law cross-correlations between simultaneously recorded time series. In addition, a method
of detrended partial-cross-correlation analysis (DPCCA) was proposed [31] to quantify the intrinsic relations of two non-
stationary signals with influences of other signals removed. Piao et al. [32] applied the DPCCA to analyze the temporal
evolutions of intrinsic correlations between winter-time Pacific-Northern America pattern (PNA)/East Pacific wave-train
(EPW) and winter-time drought in the west United States. Qian et al. [33] developed a multifractal DPCCA method and
found it beneficial to reveal the hidden multifractal nature of time series.

Although cross-correlation analysis of interactive signals from complex systems has achieved a great development in the
past decade, within our knowledge there are seldommethods to investigate the temporal cross-correlation characteristics of
coupled time series. In this current study, as a generalization of the DCCA [5], a method of local detrended cross-correlation
analysis (LDCCA) is proposed to investigate the temporal cross-correlation behavior of time series at local samples. The
performance of the proposed LDCCA is evaluated using uncoupled Gaussian white noises, coupled ARFIMA processes and
Hénon maps. As an example, the LDCCA is employed to investigate the temporal evolution characteristics of the interfacial
structures in gas–liquid churn flows.

This paper is structured as follows: Section 2 describes the algorithm of the LDCCA; Section 3 presents the evaluation
of the LDCCA performance; Section 4 presents the temporal cross-correlations of changeable interfacial structures in churn
flows using LDCCA.

2. Algorithm of DCCA and LDCCA

The algorithm of DCCA [5] can be briefly introduced as follows. For given time series {xi} and {yi} with lengths of N , we
first compute two integrated signals as follows

Rk =

k∑
i=1

xi, R′

k =

k∑
i=1

yi, k = 1, 2, . . . ,N (1)

Then, the series Rk and R′

k are divided into N − n overlapping boxes, and each box contains n + 1 values. For a box from i
to i + n, we define the local trend, R̃k,i and R̃′

k,i, to be the ordinate of a linear least-squares fit. Next the covariance of the
residuals in each box is calculated using the following equation

f 2DCCA(n, i) ≡
1

n + 1

i+n∑
k=i

(Rk − R̃k,i)(R′

k − R̃′

k,j) (2)

Finally, the detrended covariance function is calculated by summing over all overlapping N − n boxes:

F 2
DCCA(n) ≡ (N − n)−1

N−n∑
i=1

f 2DCCA(n, i) (3)

The power-law cross correlations between the time series {xi} and {yi} may exist only if F 2
DCCA(n) ∼ n2λ for both series.

The λ exponent quantifies the long-range power-law cross-correlation but does not quantify the level of cross-correlations.
Zebende [11] proposed a DCCA cross-correlation coefficient ρDCCA to quantify the level of cross-correlation of the time series:

ρDCCA ≡
F 2
DCCA

FDFA{xi}FDFA{yi}
(4)

where FDFA{xi} and FDFA{yi} are the detrended root-mean-square functions of series {xi} and {yi}, respectively. The cross-
correlation coefficient ρDCCA is a dimensionless coefficient that ranges between −1 and 1. A value of ρDCCA = 0 means there
is no cross-correlation between two the time series, whilst 0 < ρDCCA ≤ 1 and −1 ≤ ρDCCA < 0 indicate positive and
negative cross-correlation characteristics of both series respectively.

Based on theDCCAwepropose amethod of local detrended cross-correlation analysis (LDCCA) to investigate the temporal
cross-correlation characteristics of coupled time series. The main idea of the LDCCA can be described as follows. A moving
window ψWs with a size of Ws is used to run along the entire coupled series. Having ψWs centered at the sth samples of the
coupled series, the DCCA is computed for all samples within the window ψWs. The obtained cross-correlation coefficient is
treated as the local detrended cross-correlation coefficient ρLDCCA(s,Ws) due to the time scale Ws on sth samples. Through
sliding the window one (or several) sample(s) each time and repeating the calculations until the end of coupled series, we
can achieve the local cross-correlation detrended coefficient for time scaleWs. Next,Ws is increased and the aforementioned
process is repeated again until a selected maximumWs is attained. Details of LDCCA are described in Fig. 1.

(1) In Fig. 1(a), X(s) and Y (s) respectively indicate the sth samples of given time series X(t) and Y (t) with a same length L.
For LDCCA, we first select a range [Wsmin, . . . ,Wsmax] of the moving window sizes, i.e., the time scales.
For a window size Ws, padded series Xpad(t) and Ypad(t) are obtained by adding l = Ws/2 reflected samples at the
beginning and ending points of time series X(t) and Y (t). Here, the method of reflected-sample-padding is based on
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