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a b s t r a c t

We propose a method to infer the parameters of a probabilistic model from given data
samples. Our method is based on the pseudolikelihood and composite likelihood methods.
We cluster the given data samples and apply the clustered data samples to the pseudo-
likelihood and composite likelihood methods. From an expansion of the pseudolikelihood
method around the mean of a cluster, the mean-field and Thouless–Anderson–Palmer
equations are derived. Likewise, from an expansion of the composite likelihood method
around the mean of a cluster, a method that is similar to the Bethe approximation is
derived. We then perform numerical simulations using our method. We find that our
method gives an accurate estimate in the range of weak coupling parameters but has an
inferior accuracy compared to the pseudolikelihood and composite likelihood methods in
the range of strong coupling parameters. In the range of strong coupling parameters, as the
number of clusters increases, the inference accuracy of ourmethod improves. Compared to
the pseudolikelihood and composite likelihood methods, our method reduces the number
of computational tasks for the estimation, therefore, sacrificing the inference accuracy.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the increase in computer performances and the prevalence of computers, it is easy to obtain large amounts of data.
Feature extraction methods have attracted much attention in applications to investigate the relationships contained within
such data. In particular, the interpretation of the statistical properties of data has been a major focus [1–3]. We assume
that a probabilistic model generates the given data and investigate methods to determine the parameters of this model. As
the amount of data increases, we can more accurately predict the properties behind the data by using a suitable method.
However, the number of computational tasks for the probabilistic inference increases as the amount of data increases.
Moreover, an increase in the number of parameters of a probabilistic model increases the difficulty of the probabilistic
inference. When the number of parameters of a probabilistic model or the amount of data increases, it becomes difficult to
determine the properties of the data. Therefore, even if computer performances continue to progress, probabilistic inference
will remain a difficult task. There is a dilemma regarding the treatment of the data. In this paper, we propose a method to
reduce the dilemma.

The maximum likelihood method is a standard method for inferring the parameters of a probabilistic model from given
data samples. The parameters of a probabilistic model are determined to maximize the likelihood function. Because it is
impossible to simultaneously obtain the optimum parameters, an iterativemethod is adopted to evaluate the parameters. In
the iteration process, the parameters are gradually tuned to match the expectations of the empirical distribution with those
of a probabilistic model. However, it is difficult to evaluate the expectations of a probabilistic model barring exceptions.
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To settle this problem, one alternative to the maximum likelihood method is the pseudolikelihood method [4–8]. In the
pseudolikelihood method, the likelihood function is replaced with the product of a full conditional. The pseudolikelihood
method has two outstanding properties: consistency and convexity [9,10]. The pseudolikelihood method surpasses the
maximum likelihood method for a low number of computational tasks. However, the pseudolikelihood method requires
many computational tasks to accurately estimate the parameters.

The mean-field method from statistical physics significantly reduces the number of computational tasks for estima-
tion [11–14]. However, the mean-field method is restricted in its applicability. When the correlation between random
variables is strong, the mean-field method fails to infer the parameters of a probabilistic model. The reason for this failure
originates in the origin of the mean-field method. To improve the estimation accuracy, there is a simple approximate
inference method known as the Bethe approximation or belief propagation [15–21]. The Bethe approximation outperforms
themean-fieldmethod for the inference of parameters. Themean-fieldmethod and the Bethe approximation are interpreted
in an expansion with respect to the parameters and a partial summation of their higher-order terms [3]. Even though both
methods have the advantage of a small number of computational tasks, they fail in the range of strong coupling parameters
andhave an inferior estimation accuracy compared to the pseudolikelihoodmethod. To improve the inference accuracy of the
mean-field method, the application of clustered data samples has been proposed [22,23]. The idea for such an application
originates from a physical consideration, which we consider to be heuristic. The mean-field method with clustered data
samples gives excellent results for restricted cases.

In the present paper, we apply the pseudolikelihoodmethod to clustered data samples. When there exist large data sam-
ples of a probabilistic model withmany parameters, the pseudolikelihoodmethod requires a large number of computational
tasks to obtain an accurate estimate. The large number of computational tasks of the pseudolikelihood method originates
from the sum over all the data samples. To relax the number of computational tasks, we cluster the data samples and divide
the sum into a sum over the clusters and a sum over the data samples in one cluster. In our method, we repeat the sum over
the clusters in an iterated evaluation, which reduces the number of computational tasks needed to infer the parameters.
We show that the mean-field method and the Thouless–Anderson–Palmer (TAP) equation with clustered data samples are
derived from the pseudolikelihood method. There is another method known as the composite likelihood method, which
corresponds to a generalization of the pseudolikelihood method [24–26]. Even though the composite likelihood method
gives a superior estimation accuracy compared to the pseudolikelihood method, it is inferior with regard to the number of
computational tasks required. We apply clustered data samples to the composite likelihood method and obtain a method
similar to the Bethe approximation.

2. Theory

Consider a set ofN discrete numbers, x = {x1, x2, . . . , xN}. This set x is generated by an unknown probability distribution.
We want to estimate the parameters in a probabilistic model from the given data x. To explain our idea concretely, we
prescribe xi to be binary, i.e., xi ∈ {−1, +1}. The prescription for xi does not restrict the effectiveness of our method. Then,
the set is given by x ∈ {−1, +1}N . We assume that the data x are generated by the following probability distribution:

P(x|{Jij}, {hi}) =
1

Z({Jij}, {hi})
exp

(1
2

N∑
i̸=j

Jijxixj +
N∑
i=1

hixi
)
, (1)

where Jij is a coupling parameter and hi is a bias [27,28]. The denominator Z({Jij}, {hi}) is a partition function, which is
introduced to normalize the probability distribution. We consider a graph consisting of N vertices with edges connecting
each vertex. The ith element of x, i.e., xi, is located at the ith vertex. There is an edge between the ith and jth vertices in the
case where Jij ̸= 0. For simplicity, we assume that Jij is symmetric, i.e., Jij = Jji, and set Jii = 0. The above probabilistic model
is equivalent to a graph and corresponds to a Boltzmann machine without hidden vertices. The problem is to infer a set of
{Jij} and {hi} from M sets of x, i.e., D = {x(1), x(2), . . . , x(M)

}. For the inference of the parameters in a probabilistic model,
the maximum likelihood estimation is useful. Given D, we define a histogram corresponding to the empirical distribution
function, such as

Q (x) =
1
M
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δ(x, x(µ)), (2)

where δ(x, x′) is the Kronecker delta, which is equal to unity when x = x′ and zero when x ̸= x′. Using the empirical
distribution function, we define the log-likelihood as
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− ln Z({Jij}, {hi}). (3)
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