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A B S T R A C T

Reliable forecasting methods increase the integration level of stochastic production and reduce cost of inter-
mittence of photovoltaic production. This paper proposes a solar forecasting model for short time horizons, i.e.
one to six hours ahead. In this time-range, machine learning methods have proven their efficiency. But their
application requires that the solar irradiation time series is stationary which can be realized by calculating the
clear sky global horizontal solar irradiance index (CSI), depending on certain meteorological parameters. This
step is delicate and often generates additional uncertainty if conditions underlying the calculation of the CSI are
not well-defined and/or unknown. As a novel alternative, we introduce a so-called periodic autoregressive (PAR)
model. We discuss the computation of post-sample point forecasts and forecast intervals. We show the fore-
casting accuracy of the model via a real data set, i.e., the global horizontal solar irradiation (GHI) measured at
two meteorological stations located at Corsica Island, France. In particular, and as opposed to methods based on
CSI, a PAR model helps to improve forecast accuracy, especially for short forecast horizons. In all the cases, PAR
is more appropriate than persistence, and smart persistence. Moreover, smart persistence based on the typical
meteorological year gives more reliable results than when based on CSI.

1. Introduction

Solar energy, mainly photovoltaic, is an energy resource which
plays an increasingly important role in the electrical energy production
due to its abundance, cleanness and cost effectiveness characteristics
with limited environmental consequences. On the other hand, solar
power has a fluctuating generation profile because of its inherent cyclic
and time varying nature, leading to limitations on stability and trust-
worthiness of solar power grid systems (Shamshirband et al., 2015). To
reduce the inconvenience of this stochastic and intermittent nature, and
to improve the inclusion of solar power plants, an efficient forecasting
method of solar radiation is paramount. Moreover, this intermittent
character gives rise to additional production costs compared with
conventional production, from 1 to 8€/MWh with an average value
around 6€/MWh (Notton et al., 2018). Thus, a reliable production
forecasting method decreases the average annual operating costs. In
addition, it reduces the reserve shortfalls and it reduces curtailments.
Several methods are available for forecasting depending on the time
horizon and time resolution (Notton and Voyant, 2018).

This paper concerns forecasting at short time horizons, i.e., one to

six hours ahead with a one hour time step. In this time-range, machine
learning methods have proven their accuracy. But their application
requires that a solar irradiation time series is stationary which can be
realized by calculating conditions for clear sky (CS) solar irradiation,
depending on certain meteorological parameters (Diagne et al., 2013;
Lauret et al., 2015). The use of a CS solar radiation model, however,
induces an important source of error because this type of model de-
pends on meteorological parameters which vary month by month or
during a day. To avoid this difficulty, the purpose of the paper is to
present a forecasting model which does not require a CS model, and
which can be easily implemented in practice.

The remainder of the paper is organized as follows. In Section 2, we
introduce the concept of periodically correlated processes and we
provide arguments why global horizontal solar irradiation measure-
ments are periodic seasonal time series. In Section 3, we discuss pro-
blems induced by a CS model. Section 4 provides details about the data
under study. The periodic autoregressive (PAR) model is introduced in
Section 5, and expressions for point forecasts, forecast intervals, and
forecast evaluation measures are given. Section 6 provides some in-
formation about alternative forecasting models. Section 7 shows PAR
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identification and PAR forecasting results. It includes results of a
comparative forecasting experiment. Lastly, Section 8 offers some
concluding remarks.

2. Periodic phenomena

Consider a time series process ∈Y t{ , }t whose second moments
exist. The process is said to be periodically correlated (PC) with period
H, or periodic covariance stationary (Gladhyšhev, 1961; Pagano, 1978),
if the following two conditions
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are true for =h H but for no smaller value of h. In other words, the
mean and autocovariance functions are periodic functions of time with
period h: that is, the first and second order moments of the process do
depend on the period and the lag, but not on the absolute time. The
periodic autocorrelation function at lag = …s 1, 2, and time t is defined
by =ρ γ γ/s t s t t, , 0, .

Global horizontal solar irradiation (GHI, in W/m2) measurements
can be viewed as periodic seasonal time series. In general, a seasonal
pattern appears when a time series is influenced by seasonal factors,
e.g., the month of the year, the day of the week, or the hour of the day
(Hokoi et al., 1990). As can be seen from Eq. (1), the seasonality is
always of a fixed and known period, and hence, the time series is called
periodic. In general, the average length of cycles is longer than the
length of a seasonal pattern, and the magnitude of cycles tends to be
more variable than the magnitude of seasonal patterns (Franses and
Paap, 1994). From these observations, we deduce the following two
properties.

(1) The observed time series GHI t( ) = …t N( 1, , ) can be considered as a
periodic time series with two fixed seasonal periods H and D. In this
study =H 24 h h( ) and =D 365 days d( ). For =H 24, this condition
is formally tested in Section 7.1 using p-values of the sample peri-
odic autocorrelation function.
For simplicity, we assume that × =N H D Y/( ) is an integer re-
presenting the number of available years. GHI t( ) can be decom-
posed into three new time series: two are strongly seasonal, and one
time series is related to the noise, or irregular component. That is

 ∈ = ∈t t f t t ε t t{GHI( ), } { (S ( ), S ( ), ( )), }.h d24 365 (2)

2) The function f (·) defines the type of decomposition: additive,
multiplicative or hybrid. Usually the multiplicative mode is pre-
ferred, and the term ×S Sh d24 365 at time t is a proxy of the so-called
CS global irradiation, i.e., = × ∈t S t S t tCS( ) { ( ) ( ), }h d24 365 .

The ratio GHI t( )/CS t( ) defines the clear sky index CSI ∈t( ) [0, 1].
Note, however, that for a cloudy period CSI can be greater than 1 due to
cloud enhancement.

Observe from property (1) that a solar irradiation time series con-
tains only seasonal patterns. These components can be deleted by sea-
sonal adjustment using a ratio to trend (detrending), divided by an
estimate of a CS t( ) series (Grantham et al., 2016, 2018) or, if estimation
is difficult, divided by a moving average of the series (Voyant et al.,
2011). Alternatively, one can adopt a classical seasonal autoregressive
integrated moving average (SARIMA) model. Implicit in such models is
the assumption of homogeneity or time invariance, i.e. the seasonally
differenced series is sure to become stationary. However, many sea-
sonal time series cannot be filtered, standardized or differenced to
achieve second-order stationarity because the series exhibits a strong
seasonal behavior such that the entire autocorrelation structure of the
series depends on the season, hence the homogeneity assumption fails
(Tiao and Grupe, 1980). In fact, the majority of GHI time series satisfy

the property of periodic stationarity (Ula and Smadi, 1997), stating that
their sample mean and sample autocorrelation function are periodic
with respect to time. A more realistic family of models characterizing
those kind of seasonal time series is the PAR model.

The method of moments based on the well-known Yule-Walker
equations and the least squares method in the univariate case are both
efficient ways to estimate PAR models. However, the number of esti-
mated parameters is likely to increase with the choice of the season.
Thus, in our study it will be easier to consider only the =H 24 h period,
giving rise to a parsimonious PAR model with only 24 components
rather than estimating a model with =D 365 components. Moreover, it
is often useful to put linear constraints on the parameters for a given
season.

In the next section, we will focus on two approaches to take sea-
sonality into account. The first approach uses a white box model (WM)
based on the knowledge model which we couple with the stochastic
modeling of CSI t( ). This approach is often called grey box modeling, or
in short-hand notation GM. The second approach uses the previously
measured data and any knowledge-based model, and we call it a black
box model or BM. Observe that a GM (=WM+BM) is often more in-
teresting to analyze than a BM since it encompasses a semi-physical
model. But adopting the GM can add an additional uncertainty if the
parameters of the model are not well-defined, and thus decreasing the
reliability of the GM.

3. Clear sky (CS) model

For a temporal forecast horizon up to and including six hours ahead,
a CS solar irradiation model is often used to make the time series GHI t( )
stationary, before calculating the CS t( ) index (Lauret et al., 2015;
Voyant et al., 2015). The chosen CS model in this study is the Solis
model (Mueller et al., 2004; Ineichen, 2008). The CS global horizontal
irradiance reaching the ground is defined by
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η t

η tCS( ) ( )exp
sin ( ( ))

sin( ( )).g0
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Here I0 is the extraterrestrial radiation (depends on the day of the year),
η is the solar elevation angle (depends on the hour of the day), τ is the
global total atmospheric optical depth (depends on the day of the year
and the hour of the day), and g is a fitting parameter. In order to be
well-defined, the CS model requires meteorological parameters (Gelaro
et al., 2017) to characterize the state of the sky such as, for instance, the
aerosol optical depth (AOD) and the water vapor column defining the
total AOD. These parameters are difficult to obtain. Moreover, they
fluctuate in a large range from one year to another and during a day
from one hour to the next. Thus, the average value of these parameters
do not accurately reflect the CS condition at a given time t. Indeed
Voyant et al. (2015, Fig. 5), showed the impact of AOD values on the
forecast accuracy, as measured by the normalized mean absolute fore-
casting error (nMAE) for Ajaccio. Specifically, these authors obtain an
nMAE value of 11% in the optimized parameter case, and 18% with very
ill-optimized parameters, so an increase of 7 percentage points.

Moreover, obtaining accurate CSI t( ) series at sunset and sunrise is
difficult due to a possible surrounding masking effect such as moun-
tains, buildings, or vegetation. It may also be due to unreliable mea-
surements of solar irradiation at low solar height (instrumental errors
due to the cosine response). For these reasons, a pre-processing op-
eration is applied: solar radiation data for which the solar elevation is
lower than 10° are excluded from the analysis. However, the solar
production during these sunset and sunrise periods are often non neg-
ligible and their forecasts cannot be avoided. For forecasting tilted solar
irradiation, a CS model uses a constant albedo which, in practice, varies
seasonally and sometimes during the day (modifications of the land
cover, Notton et al., 2006). For our experimental site, the influence of
the sea on the reflected and diffused solar radiation differs in the
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