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a b s t r a c t

In this study, a strong competition model was considered between two species in a
heterogeneous environment. For a system with two different constant diffusion rates
for each competitor, the fast diffuser can be selected evolutionally under suitable
assumptions if the competing interaction between the species is strong. We also
claim that a strongly interacting competition leads to a more evolutionary selection
than that with the same population dynamics if a species moves with a certain
non-uniform dispersal. Furthermore, species with a certain non-uniform dispersal
have a competitive advantage over linear random diffusers. In addition, a species
with highly sensitive dispersal response to the environment may survive. These
strongly competitive advantages were demonstrated by investigating the stability
of semi-trivial solutions of the system with non-uniform dispersal and comparing it
to the conditions of the model with constant diffusion.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this study, we considered the following parabolic system :⎧⎪⎪⎨⎪⎪⎩
ut = ∆(γ(s)u) + u (m(x) − u− av)
vt = d∆v + v (m(x) − bu− v) in Ω × (0,∞),
∇(γ(s)u) · n⃗ = ∇v · n⃗ = 0 on ∂Ω × (0,∞),
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω ,

(1.1)

where u(x, t) and v(x, t) represent the densities of the two species at location x and time t. System (1.1)
describes two strongly competing species with dispersal, where

s = u+ av

m
,
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and the function m(x) is a positive bounded smooth function, which represents the spatially varying resource
productivity affecting both the resource rate and the carrying capacity. Habitat Ω is a bounded region in
RN with smooth boundary ∂Ω , and n⃗ denotes the unit normal vector on the boundary.

First, we consider case γ(s) = d1, d = d2, where d1, d2 are positive constants. We denote such a system
by (1.1)const. As the following scalar equation{

d∆u+ u(m(x) − u) = 0 in Ω ,
∇u · n⃗ = 0 on ∂Ω

(1.2)

has a unique positive solution, denoted by θd, (1.1)const provides two semi-trivial solutions (θd1 , 0) and
(0, θd2). Generally, for two competing species with different constant diffusion rates, the slow diffuser has a
survival advantage over the fast diffuser in a spatially heterogeneous and temporally invariant environment
when the population dynamics for two phenotypes is identical. For example, in [1], the authors showed
that in the case a = b = 1, if d1 < d2, then (θd1 , 0) is globally asymptotically stable for all non-negative,
non-trivial initial data. In this study, it is first claimed that this is not always true under a certain situation
for an interacting system with strong competition when a > 1 and b > 1. For a system with two different
constant diffusion rates for each competitor, the fast diffuser can be selected evolutionally if the competing
interaction between the two species is strong. More precisely, we have

Theorem 1.1. Let c∗ = supx∈Ω̄
m(x)

θd1 (x) > 1, where θd1(x) is a unique positive solution when species v is
absent in (1.1)const.
(i) If b > c∗, then (θd1 , 0) is linearly stable.
(ii) If b < c∗, then there exists 0 < w1,d1 < d1 such that if d2 < w1,d1 , then (θd1 , 0) is linearly unstable, and
if d2 > w1,d1 , then (θd1 , 0) is linearly stable.

Note that the symmetric result of Theorem 1.1(ii) can be obtained for the semi-trivial solution (0, θd2).
Thus, a threshold number, say w1,d2 , can be found that determines the stability of (0, θd2) when a < c∗ =
supx∈Ω̄

m(x)
θd2

.
However, if a dispersal follows a strategy with a fitness property, the size of the dispersal is not crucial.

For instance, starvation-driven diffusion (SDD), which was introduced by Cho and Kim [2], is a dispersal
strategy that increases the motility of biological organisms when they are in an unfavorable environment.
In competition models with SDD for two phenotypes of a species, Kim et al. [3] demonstrated that the
species with SDD has a survival advantage over the species with constant diffusion. In the present study,
we claim that for strongly competing systems (a, b > 1), if one competitor follows a dispersal strategy with
SDD, then the species has a strong competitive advantage, i.e., the species that follows SDD under strongly
competing interaction can be selected more evolutionally than that obeying SDD under the same population
dynamics (a = b = 1). Furthermore, when the competition is strong, the corresponding interaction can
lead to the extinction of the other species, regardless of their diffusion type. In addition, a species with
highly sensitive dispersal response to the environment can survive, regardless of dispersal. These strongly
competitive advantages are demonstrated by investigating the stability of semi-trivial solutions of the system
with SDD, and then comparing it to the conditions of the model with constant diffusion. To this end, system
(1.1) where γ is a non-constant function is considered. In the present model, the motility function γ0(s) is
defined by

γ0(s) =
{
ℓ for 0 < s < 1
h for 1 < s < ∞

which is an increasing function, where 0 < ℓ < h are constants, and the variable s is the satisfaction measure
on the environment defined by s = u+av

m . This discontinuous function γ0 is approximated by a smooth
motility function defined by a convolution,

γε := γ0 ∗ ηε,
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