Accepted Manuscript

Positive solution for a class of nonlocal elliptic equations

Huiqin Lu, Xingqiu Zhang

PII: \quad S0893-9659(18)30306-9
DOI: https://doi.org/10.1016/j.aml.2018.08.019
Reference: AML 5630

To appear in: Applied Mathematics Letters
Received date: 25 May 2018
Revised date: 22 August 2018
Accepted date: 22 August 2018

Please cite this article as: H. Lu, X. Zhang, Positive solution for a class of nonlocal elliptic equations, Appl. Math. Lett. (2018), https://doi.org/10.1016/j.aml.2018.08.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Positive solution for a class of nonlocal elliptic equations

Huiqin Lu^{a}, Xingqiu Zhang ${ }^{b *}$
${ }^{a}$ School of Mathematics Statistics, Shandong Normal University, Jinan, Shandong 250014, PR China
${ }^{b}$ School of Medical Information Engineering, Jining Medical College, Rizhao, Shandong 276826, PR China

Abstract

In this paper, we devote ourselves to investigating the existence of positive solution for a class of nonlocal elliptic equations. Our approach is based on the fixed point index theory.

Keywords: Nonlocal elliptic equation; Positive solution; Fixed point index theory
AMS subject classifications (2000): 35J60, 35S15, 37C25, 47G20

1 Introduction

This paper is mainly concerned with the existence of positive solution for the following nonlocal elliptic equations

$$
\left\{\begin{array}{lc}
\mathcal{L}_{K} u+f(x, u)=0 & \text { in } \Omega \tag{1.1}\\
u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega
\end{array}\right.
$$

where \mathcal{L}_{K} is the nonlocal operator defined as follows:

$$
\begin{equation*}
\mathcal{L}_{K} u(x)=\frac{1}{2} \int_{\mathbb{R}^{N}}(u(x+y)+u(x-y)-2 u(x)) K(y) d y, \quad x \in \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

here $K: \mathbb{R}^{N} \backslash\{0\} \longrightarrow(0,+\infty)$ is a function with the properties that
$\left(K_{1}\right) \quad m K \in L^{1}\left(\mathbb{R}^{N}\right)$, where $m(x)=\min \left\{|x|^{2}, 1\right\}$;
$\left(K_{2}\right) \quad$ there exist $\gamma>0$ and $s \in(0,1)$ such that $K(x) \geq \gamma|x|^{-(N+2 s)}$ for any $x \in \mathbb{R}^{N} \backslash\{0\}$;
$\left(K_{3}\right) \quad K(x)=K(-x)$ for any $x \in \mathbb{R}^{N} \backslash\{0\}$.
And the nonlinear term f satisfies the following conditions:
$\left(f_{1}\right) \quad f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathédory function, $f(x, t) t \geq 0$ for any $x \in \bar{\Omega}, t \geq 0$ and $f(x, t) \equiv 0$ for any $x \in \bar{\Omega}, t<0$;
$\left(f_{2}\right) \quad$ there exist $C>0$ and $q \in\left(2,2^{*}\right)$ with $2^{*}=\frac{2 N}{N-2 s}$ such that $|f(x, t)| \leq C\left(1+|t|^{q-1}\right)$;
$\left(f_{3}\right) \quad \lim _{t \rightarrow 0^{+}} \frac{f(x, t)}{t}=f_{0}$ and $\lim _{t \rightarrow \infty} \frac{f(x, t)}{t}=f_{\infty}$ uniformly for $x \in \bar{\Omega}$.
A typical example for K is that $K(x)=|x|^{-(N+2 s)}$, that is when the operator \mathcal{L}_{K} coincides with the fractional Laplace operator $(-\triangle)^{s}$ which is nonlocal, different in regularity, Maximum principle from the classical Laplacian operator.

[^0]Download Persian Version:
https://daneshyari.com/article/10142484

Daneshyari.com

[^0]: ${ }^{*}$ Corresponding author. E-mail addresses: lhy0625@163.com (H. Lu), zhxq197508@163.com (X. Zhang), Tel. +86 15588732167

