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A B S T R A C T

Crop simulation models offer possibilities to evaluate and target agricultural information for sustainable in-
tensification in countries like Ethiopia with inadequate resources for field research. The objectives of this re-
search were to calibrate and evaluate the CERES-Maize, CROPGRO-Dry bean and CROPGRO-Soybean models for
practices associated with conservation agriculture and fertilizer N, and to evaluate five generated weather da-
tasets for Ethiopia. Data from multi-year field experiments and additional data obtained from previously con-
ducted national variety trials were used for model evaluation. Generated weather datasets for six agroecologies
were evaluated by comparison with observed data and by use of data in the models. Genetic coefficients used in
the models for maize, dry bean and soybean were determined by model parametrization and calibration of
phenology and yield. The models acceptably simulated the effects of N rate, maize-legume rotation, and crop
residue retention plus tillage with average normalized deviation closer to zero, RMSE less or similar to standard
deviation of observed data, and with normalized RMSE (nRMSE)< 15%. Both NASA and Global Yield Gap Atlas
(GYGA) daily rainfall showed good agreement with observed weather data (RMSE < 9mm). Daily maximum
and minimum temperature of GYGA and WeatherMan datasets had the lowest RMSE of 1.99 and 3.06, and 2.5
and 3.1 °C, respectively. Between 85–100% of simulated grain yields of maize, dry bean and soybean with GYGA
and WeatherMan datasets fell within±10% deviation of mean simulated grain yields with observed weather
data, and with the lowest inter-annual variability. It was concluded that model calibrations were satisfactory,
and either GYGA or WeatherMan datasets alone or combined could be used to run the crop models in sites which
lack observed daily weather data in Ethiopia.

1. Introduction

The need for increasing agricultural productivity on a sustainable
basis is a primary concern for agricultural research and development in
Ethiopia. Cropping system models may be useful in evaluating alter-
native production practices focused on sustainably increasing land
productivity (Grassini et al., 2009; Mupangwa et al., 2011; Gaydon
et al., 2017). Such models can provide valuable insights across diverse
agroecological and socioeconomic conditions, especially when re-
sources for field research are inadequate to provide sufficient in-
formation in space and time to identify appropriate and effective crop
and land management practices (Jones et al., 2016). For example, the

Agricultural Productivity System sIMulator (APSIM) model was used to
develop an understanding of long-term effects of conservation agri-
culture on the productivity of smallholder systems in Zimbabwe
(Mupangwa et al., 2011; Gaydon et al., 2017). Successful application of
the Decision Support System for Agrotechnology Transfer (DSSAT) has
been reported for sub-Saharan Africa (Singh et al., 2002; Jones et al.,
2003; Corbeels et al., 2014). CERES-Maize, CROPGRO-Soybean, and
CROPGRO-Dry bean models embedded in DSSAT were used cost-ef-
fectively to examine alternative crop and soil management practices
such as conservation agriculture, resource use efficiency, and the sus-
tainability of cropping systems (Bidogeza et al., 2012; Corbeels et al.,
2014). Such models were used to evaluate alternative crop and soil
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management practices given the environmental conditions (Bidogeza
et al., 2012). Application of CERES-Maize, CROPGRO-Dry bean and
CROPGRO-Soybean to assess the components of conservation agri-
culture including crop rotation, crop residue retention, and tillage
system, as well as fertilizer N use optimization in different agroecolo-
gies of Ethiopia, however, requires model calibration and evaluation.

Using crop models to assess crop management requires a minimum
of long-term daily rainfall, maximum (Tmax) and minimum tempera-
ture (Tmin), and solar radiation, in addition to soil profile information.
Depending on the degree of weather variability among years, at least
10–20 yr of daily weather data are needed for reliable assessment of the
effect of a management practice on mean yield potential and inter-an-
nual variability in an agroecological zone (Van Ittersum et al., 2013;
Van Wart et al., 2013a; Grassini et al., 2015). However, weather sta-
tions are sparse in Ethiopia, and most have only a few years of complete
daily weather records available, and often solar radiation was not
measured. In addition, because of complex topography, the available
weather stations can only represent areas within a 25 km−2 radius of a
station in the mountainous regions of Ethiopia (Hirpa et al., 2010).
Meanwhile, generated weather data (gridded, propagated or generated
by weather generators) from different sources are available for use in
crop simulation models, but require evaluation to identify the dataset
that best represent daily weather variability across agroecologies of
Ethiopia.

Stochastic weather generators such as WeatherMan and MarkSim
generate daily weather data based on statistical characteristics of his-
torical daily or monthly observed weather data (Jones and Thornton,
2000; Mavromatis and Hansen, 2001). Those weather generators typi-
cally generate first daily precipitation, then other weather variables
needed by crop models (Jones and Thornton, 2000). Successful gen-
eration of weather data with a weather generator depends on the
number of years and sites required for their parameterization (Baigorria
and Jones, 2010; Rosenzweig et al., 2013). Observed daily Tmax and
Tmin data of< 5 yr is often available for most regions in Ethiopia to use
in stochastic weather generators (Van Wart et al., 2015). Generated
long-term daily data should be evaluated before use, because even
when decades of daily observed weather data were used for calibration,
simulated crop yields sometimes differed greatly when using generated
compared with observed data and inter-annual variation in simulated
crop yields were often under-estimated when using generated data
(Semenov and Porter, 1995; Hammer et al., 2002; Van Wart et al.,
2015). Also, short periods of extreme events, which are of particular
importance for crop growth, yield and crop failure, were typically not
well represented in generated weather data for some countries for
which the data were evaluated (Kysely and Dubrovsky, 2005; Semenov,
2008; Van Wart et al., 2015).

Gridded weather data are typically derived by interpolation of ob-
served weather data over space, or may also be derived from global
climate models to estimate daily or monthly weather data for a gridded
land area (Kanamitsu et al., 2002; New et al., 2002). The quality of the
generated estimates for a given grid cell can have a large degree of
uncertainty if the density and distribution of the weather station da-
tasets is inadequate (Van Wart et al., 2015). Even in regions with
adequate density of weather stations, poor agreement has been found
between simulated crop yields using gridded weather data versus si-
mulations using observed weather data from a location within the same
grid cell (Mearns et al., 2001; Baron et al., 2005). Bias in simulated
yields using gridded data were unpredictable and inconsistent having
different sign and magnitude for temperature and rainfall across loca-
tions in Ethiopia and Kenya (Van Wart et al., 2013b, 2015). The Pre-
diction of Worldwide Energy Resource dataset from the National
Aeronautics and Space Administration (NASA, 2015) was selected as
the gridded weather data source for use in this study due to public
accessibility, acceptable agreement with ground data for solar radia-
tion, and previous use in crop growth simulation studies (Bai et al.,
2010; Van Wart et al., 2013a, b). The NASA data were derived from

satellite observations coupled with the Goddard Earth Observing
System climate model to obtain complete terrestrial coverage.

As an alternative to the use of generated or gridded weather data,
Van Wart et al. (2015) developed a protocol that uses 3 yr of observed
Tmax and Tmin data, combined with long-term gridded solar radiation
and precipitation data to generate a long-term daily weather dataset
suitable for simulation of crop yield potentials. Such a weather dataset
is known as a propagated weather data. The propagated weather data
were comprised of uncorrected gridded solar radiation from NASA,
rainfall data estimates from the Tropical Rainfall Measuring Mission,
and location-specific calibration of NASA maximum and minimum
temperature using 3 yr of observed daily temperature data. Use of
propagated weather data derived from 3 yr of observed weather data
gave median simulated grain yields within± 10% of yields simulated
entirely with observed weather data for 83% of the study sites (Van
Wart et al., 2015). Even for locations such as Melkassa in Ethiopia with
weak correlation between NASA and observed Tmax and Tmin, mean
yield simulated with the propagated weather data fell within± 10% of
mean yield simulated entirely with observed weather data (Van Wart
et al., 2015). Hence, the methodology applied to develop propagated
weather data was able to correct to some degree the overall tempera-
ture bias between NASA and observed weather data for sites in sub-
Saharan Africa.

Crop growth simulation models need to be calibrated and evaluated
to study the effects of management variables of interest. Quality and
suitability of the generated, gridded, and propagated weather data,
however, varies from region to region and needs to be evaluated across
agroecologies of Ethiopia. These are necessary preparatory steps for use
of crop growth simulation models to evaluate conservation agriculture
practices and generate N response functions for fertilizer use optimi-
zation. Therefore, the objectives of this study were (i) to calibrate and
evaluate CERES-Maize, CROPGRO-Soybean and CROPGRO-Dry bean
models in Ethiopia and (ii) to evaluate different generated, gridded, and
propagated weather datasets for application of crop growth models in
Ethiopia.

2. Materials and methods

2.1. Field experiments

2.1.1. Experiment-I
Field experiments were conducted in 2010–2016 and 2015–2016,

respectively, at Melkassa and Bako Agricultural Research Centers in
Ethiopia, hereafter referred to as Melkassa and Bako, to calibrate
CERES-Maize, CROPGRO-Dry bean and CROPGRO-Soybean. These ex-
periments provided data comparing: no-tillage with 100% crop residue
retention and plow tillage with complete residue removal; maize (Zea
mays L.) monoculture, dry bean (Phaseolus vulgaris L.) monoculture,
maize-dry bean rotation, and maize-dry bean intercropping at
Melkassa; and the two-tillage practices with maize monoculture, soy-
bean (Glycine max L.) monoculture, maize-soybean rotation, soybean-
maize rotation, and maize-soybean intercropping at Bako in a complete
factorial split-plot design with tillage assigned to the main plots and
cropping systems to the sub-plots. The plot area was 100m2 for both
maize and legumes.

Tillage was according to the local practice of tilling three times
using the oxen drawn “maresha” plow (Melesse, 2007). The first and
second tillage were, respectively, done in the first and second week of
May at Bako and in the first and second week of June at Melkassa while
the third tillage was done at planting time. Planting was from the last
week of May to mid-June at Bako for both crops, and in the third and
fourth wk of June for maize and in the last week of June and first week
of July for dry bean at Melkassa.

The maize cultivars were the hybrid BH546 at Bako and the open
pollinated Melkassa-II at Melkassa. Soybean cv Dhidhesa and dry bean
cv Nassir were grown at Bako and Melkassa, respectively. The inter-and
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