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A B S T R A C T

Two methods for the estimation of temperature-dependent thermal conductivity are developed. The concept of
constant element approximation is introduced, which approximates the thermal conductivity dependence on
temperature (k-T function) with a step function. A 1-D heat conduction process in a semi-infinite region is
considered for the design of the two methods, since an analytical solution describing this process which utilizes
the constant element approximation can be found in the literature. The problem concerning the computation of
the analytical solution is first solved, and then the analytical solution is applied to develop the two methods. For
method I, the surface flux and the movements of the isotherms are recorded. A group of implicit recurrence
formulas are established, and the thermal conductivity for each constant element can be determined sequentially
in a non-iterative way. For method II, time-varying temperatures at two depths are measured. The thermal
conductivities for the constant elements are determined through an optimization process using the Levenberg-
Marquardt method. The application of the analytical solution greatly reduces the computational effort spent on
the solution process of the inverse problem. Computational examples are presented. The two methods are ap-
plied to estimate five types of temperature-dependent thermal conductivities, and the accuracies of the estimated
results are discussed. The two methods are proven to be applicable for arbitrary types of k-T function, and a prior
knowledge concerning the form of the k-T function is not necessary.

1. Introduction

Information of thermal conductivity is required for engineering
applications associated with the heat transfer process. Many methods
have been invented to measure the thermal conductivity including
those based on the analysis of inverse heat conduction problem (IHCP)
[1,2]. Most of early methods are designed for the situation with con-
stant thermal conductivity, and they are not suitable for the situation
with temperature-dependent thermal conductivity. Over the past few
decades, significant improvements have been achieved for material
sciences, and materials with temperature-dependent thermal con-
ductivities are now frequently encountered. Due to the requirement in
engineering applications, methods for estimation of the thermal con-
ductivity dependence on temperature (k-T function) have also been
developed.

Methods for estimation of the temperature-dependent thermal
conductivity can be classified into the steady-state method and the

transient method. For the steady-state method, the temperature or the
flux is measured at the steady state. The Kirchhoff transform, which is
defined as an integral of the k-T function with respect to the tempera-
ture, is usually applied. The steady-state heat diffusion equation (non-
linear) can be linearized to the Laplace equation using the Kirchhoff
transform. The distribution of the Kirchhoff heat function is obtained
from the measured data, and then the k-T function can be determined
from the definition of the Kirchhoff transform. For the transient
method, the temperature or the flux is measured during the transient
state. The method usually transforms the estimation problem to an
optimization problem. The objective of the optimization problem is to
minimize the objective function, which is defined as the sum of the
squared difference between the calculated results and the measured
data. The direct problem and the inverse problem are two basic pro-
blems that must be solved during the optimization process.

In most situations, the thermal conductivity can be approximated as
a linear function of temperature, and many researchers adopted this
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simplification. Kim et al. [3] considered a conduction process of rod
with one end heated and the other insulated. They presented a transient
method for estimation of the thermal conductivity from the measured
temperatures at both ends. The direct problem was solved by the in-
tegral approach with the temperature profile approximated by a third-
order polynomial, while the inverse problem was studied using a
modified Levenberg-Marquardt algorithm. Czel et al. [4] developed a
transient method using the temperature measurements from a 1-D
conduction process in the cylindrical coordinate. They adopted the fi-
nite difference method for the direct problem and a genetic algorithm
for the inverse problem. Mohebbi et al. [5] considered a 2-D conduction
process and introduced a steady-state method. Their method did not
apply the Kirchhoff transform but adopted an optimization procedure
similar to that in the transient method. A body fitted grid generation
technique was used for the steady-state direct problem, while the
conjugate gradient method was applied for the inverse problem. Ngo
et al. [6] investigated a 1-D conduction process of the brass rod heated
near the end region. They took into account the convection at the rod
surface and established a physical model for the direct problem. The
temperatures at several points in the rod were measured, and the
thermal conductivity was estimated from the inverse analysis using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Zhang et al. [7]
studied a 1-D conduction process of alloys and developed a transient
method. The novelty of their work is that the measurement of the
temperature was conducted using an infrared line camera. Since the
positions of the computational nodes for the direct problem can be set
as the positions of the temperature sensors in the camera, the optimi-
zation process is greatly simplified.

Besides the linear-type thermal conductivity, the k-T function is
often described by a linear combination of basic functions with un-
known coefficients such as the polynomial. Then the estimation of the
k-T function becomes the estimation of the unknown coefficients. Yang
[8] considered a 1-D conduction process of slab and developed a linear
transient method. He established a linear relation between the coeffi-
cients of basic functions and the temperatures at the computational
nodes after the discretization of the heat diffusion equation. These
coefficients can then be determined in a non-iterative way once the
time-varying temperatures at the computational nodes are measured.
Yang [9,10] also considered a 1-D conduction process with constant
boundary fluxes and presented a transient method using the measured
temperatures at the two boundaries. The finite difference method was
adopted for the direct problem, and the Gauss method was used to solve
the inverse problem. Kim [11] presented a steady-state method from
the analysis of a 1-D slab conduction process using the Kirchhoff
transform. The coefficients of basic functions were related to the data
imposed and measured at the two ends. After enough sets of steady-
state tests are conducted, these coefficients can then be determined
from a group of closed-form equations. Mierzwiczak et al. [12] devel-
oped a steady-state method from the analysis of a 2-D conduction
process using the Kichhoff transform, in which the measurements of
heat flux through the sample and the temperatures at boundaries and
some interior points are required. The method of fundamental solutions
(MFS) was used to construct the general solution for the linear Laplace
equation. The coefficients in the general solution and the coefficients in
basic functions were determined together from the measured data also
in a non-iterative way. He et al. [13] transformed the problem for the
estimation of the coefficients to a multi-objective optimization problem,
and solved the problem using the Elitist Non-dominated Sorting Genetic
Algorithm (NSGA-II).

Aforementioned methods belong to the category of parameter esti-
mation approach. A prior knowledge regarding the form of the k-T
function is required so that basic functions can be chosen appropriately
and certain accuracy of the estimation can be achieved. There are also
situations that no prior knowledge is given concerning the k-T function,
and then the estimation of the thermal conductivity must be solved
using certain function estimation approach. Martin et al. [14]

developed a method from the analysis of a steady-state conduction
process using the Kirchoff transform. The method requires the mea-
surement of the heat fluxes for all boundary elements on the surface,
and also needs the measurement of several boundary temperatures. Kim
et al. [15] reconsidered the conduction process presented in Kim et al.
[3] and developed a non-iterative transient method for the estimation
of k-T function. They still adopted a third-order polynomial for the
temperature profile, and established a simple relation linking the
thermal conductivity with some known parameters. The applicability of
their method depends on the accuracy of the polynomial approximation
of the temperature profile. Borukhov et al. [16] presented a functional
identification approach for the estimation of k-T function from the
analysis of a 1-D transient conduction process. Continuous temperature
measurements were assumed; thus, the objective function was defined
as the integral of the squared difference between the calculation and the
measurement. They considered three function spaces and defined three
types of norms respectively. The conjugate gradient method was
adopted to minimize the objective function and to find the optimal k-T
function in each function space. For the function estimation approach,
the computation of the sensitivity matrix is especially time-consuming;
Cui et al. [17] adopted a complex-variable differentiation method for
the calculation of the sensitivity matrix and developed a transient
method from the analysis of a 1-D conduction process. Their method is
essentially based on the linear element approximation of the k-T func-
tion [18]. However, they only presented a simple computational ex-
ample for the case with a piecewise linear k-T function, and a prior
knowledge concerning the number of the linear segments was still used
during the estimation process.

In this paper, the estimation of temperature-dependent thermal
conductivity with no prior knowledge concerning the form of the k-T
function is investigated, and two function estimation methods based on
the constant element approximation of the k-T function are developed.
Different from existing function estimation methods, an analytical so-
lution is applied for the design of the two methods. On one hand, the
analytical solution provides useful formulas that can be applied to de-
velop simple non-iterative methods for the estimation of k-T function;
on the other hand, the analytical solution makes the solution process of
the IHCP much easier and reduces the computational efforts greatly.

The rest of the paper is organized as follows. Section 2 introduces
the concept of constant element approximation and presents governing
equations (both the original and the transformed) for a 1-D nonlinear
heat conduction problem. Section 3 introduces Tao's analytical solution
[19] for this problem, and resolves the issue concerning the computa-
tion of the solution. Section 4 develops a non-iterative method (method
I) for the estimation of k-T function, while computational examples of
method I are shown in section 5. Section 6 introduces an iterative
method (method II) for the estimation of k-T function based on the
Levenberg-Marquardt method, while computational examples of
method II are shown in section 7. Discussions of the two methods are
presented in section 8, followed by section 9, with some conclusions.

2. Problem description

2.1. Constant element approximation

In order to accommodate different types of k-T function, a constant
element approximation which is often used for estimation of the time-
varying surface flux [18] is adopted here.

Fig. 1 shows a schematic diagram for the constant element ap-
proximation. The variation of the thermal conductivity with the tem-
perature in (U, V) is represented by the dashed curve. The constant
element approximation divides (U, V) into several small temperature
intervals. Since the temperature interval is small, the thermal con-
ductivity (other thermal properties as well) in each interval can be
seemed as a constant. The essential nature of this approximation is to
replace the k-T function with a few constant elements, and it is also an
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