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a b s t r a c t

In Bayesian comparison of two proportions, the exact computation of the evidence involves
evaluating a generalized hypergeometric function. Several agreeing, but not identical,
expressions for the evidence have been derived in the literature; however, their practical
computation (by summing the truncated hypergeometric series) can be troubled by slow
convergence or catastrophic cancellation. Using a set of equivalence relations for the gener-
alized hypergeometric function, we derive ten equivalent expressions for the evidence:We
show that one of these formulations, which has not previously been studied, is superior in
terms of its computational properties. We recommend that this be used instead of existing
formulations, and provide an efficient software implementation.

© 2018 Elsevier B.V. All rights reserved.

1. Bayesian comparison of two proportions

Let T denote a 2 × 2 contingency table with fixed column totals n1 and n2,

T =

[
y1 y2

n1 − y1 n2 − y2

]
.

In the usual Bayesian analysis of such tables, it is assumed that y1 and y2 are independent with Binomial distribution

p(yi) =

(
ni

yi

)
θ
yi
i (1 − θi)ni−yi , i ∈ {1, 2}.

Here, θ1 and θ2 are two hypothetical proportions, and the problem we will address is inference regarding their relative
magnitude; in particular determining the probability that θ1 is greater than θ2 given the observed data, p(θ1 > θ2|T ). With
the assumption of separate Beta priors

p(θi) =
1

B(α0
i , β

0
i )

θ
α0
i −1

i (1 − θi)β
0
i −1,

the independent posterior distributions of θ1 and θ2 are given by

p(θi|yi, ni) =
1

B(αi, βi)
θ

αi−1
i (1 − θi)βi−1,
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where αi = yi + α0
i and βi = ni − yi + β0

i . We can write the joint posterior conditioned on the event θ1 > θ2 as

p(θ1, θ2|T , θ1 > θ2) =
θ1

α1−1(1 − θ1)β1−1θ2
α2−1(1 − θ2)β2−1

Z(α1, β1, α2, β2)
I[θ1 > θ2],

where the normalizing constant is given by

Z(α1, β1, α2, β2) =

∫ 1

0

∫ θ1

0
θ1

α1−1(1 − θ1)β1−1θ2
α2−1(1 − θ2)β2−1dθ2dθ1. (1)

The posterior probability of the event θ1 > θ2 is then given by

p(θ1 > θ2|T ) =
Z(α1, β1, α2, β2)
B(α1, β1)B(α2, β2)

.

The practical computation of the integral in Eq. (1) is the focus of this paper. It is well known that it can be evaluated in terms
of a generalized hypergeometric function (Altham, 1969; Latorre, 1985; Kawasaki and Miyaoka, 2012). To show this, we can
write

Z(α1, β1, α2, β2) =

∫ 1

0
θ

α1−1
1 (1 − θ1)β1−1

(∫ θ1

0
θ

α2−1
2 (1 − θ2)β2−1 dθ2

)
dθ1

=

∫ 1

0
θ

α1−1
1 (1 − θ1)β1−1B(θ1; α2, β2) dθ1

=

∫ 1

0
θ

α1−1
1 (1 − θ1)β1−1 θ

α2
1

α2
2F1

[
α2, 1 − β2

α2 + 1
; θ1

]
dθ1

=
B(β1, α1 + α2)

α2
3F2

[
1 − β2, α2, α1 + α2

α2 + 1, α1 + β1 + α2
; 1

]
(2)

where B(θ1; α2, β2) is the incomplete Beta function, pFq is the generalized hypergeometric function, and where we have
used (Bateman, 1954, 20.2.5) in the final step.

Although this provides an analytic expression for Z , this particular formulation is not optimal in terms of the computa-
tional properties of its series. Furthermore, while this expression is identical to the formulation derived by Kawasaki and
Miyaoka (2012, Theorem 1), it does not coincide with other formulations derived in the literature (Altham, 1969; Latorre,
1985). This leads us to ask which formulation is most favorable from a practical, computational perspective, and whether
there exist other equivalent but superior formulations.

1.1. Evaluating the generalized hypergeometric function

The 3F2 generalized hypergeometric function is defined by the series

3F2

[
a1, a2, a3
b1, b2

; z
]

=

∞∑
k=0

(a1)k(a2)k(a3)k
(b1)k(b2)k

zk

k!
, (3)

where (x)k denotes the Pochhammer rising factorial,

(x)k =
Γ (x + k)

Γ (x)
=

{
1, if k = 0
x(x + 1) · · · (x + k − 1), if k = 1, 2, . . .

If the sequence decreases rapidly, the generalized hypergeometric function can be computed by truncating the summation
when sufficient numerical accuracy has been reached, possibly adding an approximation of the remainder. If the sequence
decreases slowly, this approach might not be practical, and if the sequence contains terms of opposite sign with similar
magnitudes, catastrophic cancellations may lead to loss of numerical precision.

1.2. Equivalence relations

Examining the definition of Z in Eq. (1), we note the two following symmetries in its four arguments, which leads to a set
of equivalence relations.

Proposition 1. Z is invariant to the substitution (α1, α2) ↔ (β2, β1) of its arguments,

Z(α1, β1, α2, β2) = Z(β2, α2, β1, α1). (4)

Proof. This can be shown bymaking the above substitution in Eq. (1), substituting the parameters θ1 ↔ 1−θ2, and changing
the order of integration. □
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