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In the present paper, we establish the theoretical framework of a new method in order to 

approximate a definite integral of a given function by the generalized Bernstein quadrature 

formula. Some numerical examples will be given as support of the theoretical aspects. We 

want to highlight an applicative side of the Bernstein polynomials, in contrast to the well- 

known theory of the uniform approximation of the functions. 
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1. Introduction and auxiliary results 

Let N be the set of positive integers and N 0 = N ∪ { 0 } . The Bernstein operator [1] associated to any real-valued function 

F : [0 , 1] → R , any x ∈ [0, 1] and any n ∈ N is defined by 

B n (F ; x ) = 

n ∑ 

k =0 

(
n 

k 

)
x k (1 − x ) n −k F 

(
k 

n 

)
. (1) 

Now, let a, b ∈ R be two real and finite numbers, such that a < b , for which we define the application l : [0, 1] → [ a , b ], given 

by l(x ) = a + x (b − a ) . Because the function l is bijective, it follows that l is invertible and l −1 : [ a, b] → [0 , 1] , l −1 (y ) = 

y −a 
b−a 

. 

Using the notations x = 

y −a 
b−a 

, 1 − x = 

b−y 
b−a 

, one can obtain the generalization of the Bernstein operator associated to any 

real-valued function G : [ a, b] → R , G := F ◦ l −1 , respectively to the knots y = a + 

k (b−a ) 
n . It follows 

B n (F ; x ) = 

n ∑ 

k =0 

(
n 

k 

)
x k (1 − x ) n −k F 

(
k 

n 

)
= 

n ∑ 

k =0 

(
n 

k 

)(
y − a 

b − a 

)k 
(

b − y 

b − a 

)n −k (
F ◦ l −1 

)(
a + 

k (b − a ) 

n 

)

= 

1 

(b − a ) n 

n ∑ 

k =0 

(
n 

k 

)
(y − a ) k (b − y ) n −k G 

(
a + 

k (b − a ) 

n 

)
=: B 

∗
n (G ; y ) . (2) 

∗ Corresponding author. 

E-mail addresses: danmiclausrz@yahoo.com (D. Micl ̆au ̧s ), plaurian@yahoo.com (L.I. Pi ̧s coran). 

https://doi.org/10.1016/j.amc.2018.08.008 

0 096-30 03/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2018.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.08.008&domain=pdf
mailto:danmiclausrz@yahoo.com
mailto:plaurian@yahoo.com
https://doi.org/10.1016/j.amc.2018.08.008


D. Micl ̆au ̧s , L.I. Pi ̧s coran / Applied Mathematics and Computation 340 (2019) 146–155 147 

Switching the variable y to x , we can write the generalization of the Bernstein operator associated to any real-valued 

function G : [ a, b] → R , any x ∈ [ a , b ] and any n ∈ N , such that 

B 

∗
n (G ; x ) = 

n ∑ 

k =0 

p ∗n,k (x ) G 

(
a + 

k (b − a ) 

n 

)
= 

1 

(b − a ) n 

n ∑ 

k =0 

(
n 

k 

)
(x − a ) k (b − x ) n −k G 

(
a + 

k (b − a ) 

n 

)
. (3) 

Remark 1. The relation (3) can be found also in the papers [3–7,9] . 

We define the application l ∗ : [ a , b ] → [0, 1], given by l ∗(x ) = 

x −a 
b−a 

. Because the function l ∗ is bijective, it follows that l ∗ is 

invertible and l −1 ∗ : [0 , 1] → [ a, b] , l −1 ∗ (y ) = a + y (b − a ) . Using the notations x −a 
b−a 

= y, b−a 
b−a 

= 1 − y, one can obtain the Bern- 

stein operator associated to any real-valued function F : [0 , 1] → R , F := G ◦ l −1 ∗ , respectively to the knots y = 

k 
n . It follows 

B 

∗
n (G ; x ) = 

n ∑ 

k =0 

(
n 

k 

)(
x − a 

b − a 

)k 
(

b − x 

b − a 

)n −k 

G 

(
a + 

k (b − a ) 

n 

)
= 

n ∑ 

k =0 

(
n 

k 

)
y k (1 − y ) n −k 

(
G ◦ l −1 

∗
)( k 

n 

)

= 

n ∑ 

k =0 

(
n 

k 

)
y k (1 − y ) n −k F 

(
k 

n 

)
=: B n (F ; y ) . (4) 

Switching the variable y to x , we get the Bernstein operator (1) associated to any real-valued function F : [0 , 1] → R , any 

x ∈ [0, 1] and any n ∈ N . The Bernstein polynomials (1) opened a new era in the approximation theory starting with the year 

1912, when Sergei Natanovich Bernstein presented his famous proof of the Weierstrass approximation theorem and contin- 

uing until today with thousands of interesting papers. Thanks to some important properties as the uniform approximation, 

the shape preservation and the variation diminishing, the Bernstein polynomials are indispensable tools in computer aided 

geometric design, as well as in other areas of mathematics. In the present paper, we want to highlight an applicative side 

of the Bernstein polynomials, in contrast to the well-known theory of the uniform approximation of the functions. In this 

respect, one example could be the approximation of various definite integrals, by using a quadrature formula based on the 

generalized Bernstein polynomials (3) . In order to get a complete algorithm for this kind of approximation, we need some 

auxiliary results. 

For any n ∈ N , let a ≤ x 0 < x 1 < ��� < x n ≤ b be some nodes. In many books on Numerical Analysis, divided differences for 

distinct nodes and any real-valued function h : [ a, b] → R are defined recursively 

[ x 0 , x 1 , . . . , x n ; h ] = 

1 

x n − x 0 
([ x 1 , . . . , x n ; h ] − [ x 0 , . . . , x n −1 ; h ]) . (5) 

Using the relation (5) , the divided difference of the function h with respect to the distinct nodes x 0 , x 1 is 

[ x 0 , x 1 ; h ] = 

1 
x 1 −x 0 

(h (x 1 ) − h (x 0 )) and the divided difference of the function h with respect to the distinct nodes x 0 , 

x 1 , x 2 can be written 

[ x 0 , x 1 , x 2 ; h ] = 

h (x 0 ) 

(x 0 − x 1 )(x 0 − x 2 ) 
+ 

h (x 1 ) 

(x 1 − x 0 )(x 1 − x 2 ) 
+ 

h (x 2 ) 

(x 2 − x 0 )(x 2 − x 1 ) 
. (6) 

Recently, Abel and Ivan [2] had an excellent idea to give a representation of the remainder in the Bernstein approximation 

formula 

F (x ) = B n (F ; x ) + R n (F ; x ) , (7) 

for all functions defined on the interval [0, 1]. 

Theorem 1. [2] For all x ∈ (0, 1) the remainder of the Bernstein approximation formula (7) possesses the representation 

R n (F ; x ) = −x (1 − x ) 

n 

2 

n −1 ∑ 

j=0 

n −1 − j ∑ 

i =0 

p n −1 − j,i (x ) 

[
i + jx 

n 

, 
i + ( j + 1) x 

n 

, 
i + 1 + jx 

n 

; F 

]

= −x (1 − x ) 

n 

2 

n −1 ∑ 

j=0 

n −1 − j ∑ 

i =0 

p n −1 − j,i (x ) 
[ 

0 , 
x 

n 

, 
1 

n 

; F (· + y i, j ) 
] 
, (8) 

where y i, j := 

i + jx 
n , ( j = 0 , . . . , n − 1 ; i = 0 , . . . , n − 1 − j) . 

The focus of this paper is to show how can be approximated a definite integral of a given function by the generalized 

Bernstein quadrature formula. In order to reach this aim, some theoretical aspects are needed. We establish a representation 

of the remainder term in the generalized Bernstein approximation formula for arbitrary functions, as a convex combination 

of divided differences of second order on known nodes. We also get an upper bound estimation for the remainder term, 

when the approximated function possesses bounded divided differences of second order. According to our knowledge, 

an upper bound estimation for the remainder in the generalized Bernstein approximation formula was presented in [5] , 

without giving a rigorous proof of it and seems to be wrong. Being motivated by this fact, in what follows we try to prove, 

respectively correct the recalled issues. Using the representation of the remainder term and the corrected upper bound 
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