
Applied Mathematics and Computation 340 (2019) 156–163 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

On the spectral radius and energy of the weighted adjacency 

matrix of a graph 

� 

Baogen Xu 

a , Shuchao Li b , Rong Yu 

b , ∗, Qin Zhao 

c 

a School of Science, East China Jiaotong University, Nanchang, Jiangxi 330013, PR China 
b Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China 
c Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, PR China 

a r t i c l e i n f o 

JEL classification: 

05C50 

94C99 

Keywords: 

Weighted adjacency matrix 

Weighted spectral radius 

Weighted energy 

a b s t r a c t 

Let G be a graph of order n and let d i be the degree of the vertex v i in G for i = 1 , 2 , . . . , n . 

The weighted adjacency matrix A db of G is defined so that its ( i , j )-entry is equal to 
d i + d j 
d i d j 

if 

the vertices v i and v j are adjacent, and 0 otherwise. The spectral radius ϱ1 and the energy 

E db of the A db -matrix are examined. Lower and upper bounds on ϱ1 and E db are obtained, 

and the respective extremal graphs are characterized. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Let G = (V, E) be a connected graph with vertex set V = { v 1 , v 2 , . . . , v n } and edge set E = { e 1 , e 2 , . . . , e m 

} , where n is the 

order and m is the size of G . If the vertices v i and v j are adjacent, we write v i ∼ v j or v i v j ∈ E. For i = 1 , 2 , . . . , n, let d i be 

the degree of the vertex v i of G . The maximum and minimum degrees of the graph G are denoted by � and δ, respectively. 

Given a graph G , the adjacency matrix A = A (G ) is defined so that its ( i , j )-entry is equal to 1 if v i v j ∈ E and 0 otherwise. 

Note that A is real symmetric. Hence, its eigenvalues are real and can be arranged in non-increasing order λ1 � λ2 � · · · � 

λn −1 � λn for a connected graph G , where λ1 is usually referred to as the spectral radius of G . For the adjacency spectra, one 

may be referred to [9,24,26] and the reference therein. 

The energy of the graph G is defined as 

E = E(G ) = 

n ∑ 

i =1 

| λi | . (1.1) 

For its basic properties and applications, including lower and upper bounds, see [16–18,22] and the nice monograph [21] on 

energy of graphs. 

In 1994, Yang et al. [29] proposed the extended adjacency matrix of graph G , written by A ex ( G ), which was defined so that 

its ( i , j )-entry is equal to 1 
2 

(
d j 
d i 

+ 

d i 
d j 

)
if v i ∼ v j and 0 otherwise. Note that A ex is a real symmetric matrix of order n , all its 

eigenvalues are real, which can be denoted by η1 � η2 � ���� ηn . Yang et al. [29] also investigated the sum of the absolute 
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values of the eigenvalues of the A ex -matrix, which was just the extended graph energy , defined as 

E ex = E ex (G ) = 

n ∑ 

i =1 

| ηi | . (1.2) 

We know from [5] that the extended graph energy E ex probably was the first and earliest modification of the ordinary (on 

the adjacency matrix based) graph energy E . It was conceived more than ten years before the Laplacian [11] , distance [15] , 

matching [3,28] and Randi ́c [6,7] energies were put forward. 

Motivated by [5,29] , in this paper we introduce a new degree-based adjacency matrix of the graph G , written by A db ( G ). 

It is defined so that its ( i , j )-entry is equal to 
d i + d j 
d i d j 

if v i ∼ v j and 0 otherwise. In fact, on the one hand, A db ( G ) may be viewed 

as a new type of weighted adjacency matrix. On the other hand, the sum of the inverse for each non-zero entry of A db is 

just the 2 · ISI ( G ), where 

I SI (G ) = 

∑ 

i j∈ E G 

1 

1 
d i 

+ 

1 
d j 

. 

This invariant is called the inverse sum indeg index . It was selected in Vuki ̌cvi ́c and Gašerov [27] as a significant predictor 

of total surface area of octane isomers and for which the extremal graphs obtained with the help of MathChem have a 

particularly simple and elegant structure. The mathematical properties of ISI ( G ) were extensively studied in [1,8,25,27] . Along 

this line, it is natural and interesting for us to study the spectral properties of A db ( G ). 

Note that A db is a real symmetric matrix of order n . Hence, all its eigenvalues are real and can be arranged as 

ϱ1 � ϱ2 � ���� ϱn , where the largest eigenvalue ϱ1 is called the weighted spectral radius of the graph G . 

The modification of the adjacency graph energy E [10] motivates our approach to introduce another type of energy, 

namely the weighted energy , for the graph G , which is defined as 

E db = E db (G ) = 

n ∑ 

i =1 

| � i | . (1.3) 

In the later part of this paper we shall need two graph invariants. One is the first Zagreb index M 1 [14,19,20,31] of G , 

which is defined as 

M 1 = M 1 (G ) = 

n ∑ 

i =1 

d i 
2 
. 

The other one is the index M 

∗ of G which is defined as 

M 

∗ = M 

∗
G = 

∑ 

v i v j ∈ E(G ) 

1 

d i d j 
. 

As usual, by K p,q (p + q = n ) , K n and K 1 ,n −1 we denote, respectively, the complete bipartite graph, the complete graph and 

the star on n vertices. For other undefined notation and terminology from graph theory and matrix theory, the readers are 

referred to [2,30] . 

The rest of the paper is organized as follows. In Section 2 , we state some preliminary results, needed for the subsequent 

sections. In Section 3 , we give some lower and upper bounds on the weighted spectral radius and characterize the extremal 

graphs. In the last section, we obtain some lower and upper bounds on the weighted graph energy and characterize the 

extremal graphs. 

2. Lemmas 

In this section, we state some previously known results that are needed in the next two sections. 

Lemma 2.1 [29] . If C is a real symmetric n × n matrix with eigenvalues ξ 1 � ξ 2 � ���� ξ n , then for any x ∈ R 

n , such that x � = 0, 

x 

T Cx � ξ1 x 

T x . 

Equality holds if and only if x is an eigenvector of C corresponding to the largest eigenvalue ξ 1 . 

Lemma 2.2 [13] . Let C = (c i j ) and D = (d i j ) be real symmetric, non-negative matrices of order n. If C � D , i.e., c ij � d ij for all i , j , 

then ξ 1 ( C ) � ξ 1 ( D ), where ξ 1 is the largest eigenvalue. 

Lemma 2.3 [23] . Let C be a real symmetric matrix of order n , and let C k be its leading k × k submatrix. Then, for i = 1 , 2 , . . . , k, 

ξn −i +1 (C) � ξk −i +1 (C k ) � ξk −i +1 (C) , 

where ξ i ( C ) is the ith largest eigenvalue of C. 

Lemma 2.4 [12] . Let G be a connected graph of order n with m edges. Then 

λ1 (G ) � 

√ 

2 m − n + 1 
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