On the spectral radius and energy of the weighted adjacency matrix of a graph

Baogen Xu^{a}, Shuchao Li^{b}, Rong $\mathrm{Yu}^{\mathrm{b}, *}$, Qin Zhao ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ School of Science, East China Jiaotong University, Nanchang, Jiangxi 330013, PR China
${ }^{\mathrm{b}}$ Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
${ }^{\text {c Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, PR China }}$

A R T I C L E I N F O

JEL classification:

05C50
94C99

Keywords:

Weighted adjacency matrix
Weighted spectral radius
Weighted energy

Abstract

Let G be a graph of order n and let d_{i} be the degree of the vertex v_{i} in G for $i=1,2, \ldots, n$. The weighted adjacency matrix $A_{d b}$ of G is defined so that its (i, j)-entry is equal to $\frac{d_{i}+d_{j}}{d_{i} d_{j}}$ if the vertices v_{i} and v_{j} are adjacent, and 0 otherwise. The spectral radius ϱ_{1} and the energy $\mathcal{E}_{d b}$ of the $A_{d b}$-matrix are examined. Lower and upper bounds on ϱ_{1} and $\mathcal{E}_{d b}$ are obtained, and the respective extremal graphs are characterized.

1. Introduction

Let $G=(V, E)$ be a connected graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where n is the order and m is the size of G. If the vertices v_{i} and v_{j} are adjacent, we write $v_{i} \sim v_{j}$ or $v_{i} v_{j} \in E$. For $i=1,2, \ldots, n$, let d_{i} be the degree of the vertex v_{i} of G. The maximum and minimum degrees of the graph G are denoted by Δ and δ, respectively.

Given a graph G, the adjacency matrix $A=A(G)$ is defined so that its (i, j)-entry is equal to 1 if $v_{i} v_{j} \in E$ and 0 otherwise. Note that A is real symmetric. Hence, its eigenvalues are real and can be arranged in non-increasing order $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant$ $\lambda_{n-1} \geqslant \lambda_{n}$ for a connected graph G, where λ_{1} is usually referred to as the spectral radius of G. For the adjacency spectra, one may be referred to $[9,24,26$] and the reference therein.

The energy of the graph G is defined as

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| \tag{1.1}
\end{equation*}
$$

For its basic properties and applications, including lower and upper bounds, see [16-18,22] and the nice monograph [21] on energy of graphs.

In 1994, Yang et al. [29] proposed the extended adjacency matrix of graph G, written by $A_{\text {ex }}(G)$, which was defined so that its (i, j)-entry is equal to $\frac{1}{2}\left(\frac{d_{j}}{d_{i}}+\frac{d_{i}}{d_{j}}\right)$ if $v_{i} \sim v_{j}$ and 0 otherwise. Note that $A_{e x}$ is a real symmetric matrix of order n, all its eigenvalues are real, which can be denoted by $\eta_{1} \geqslant \eta_{2} \geqslant \cdots \geqslant \eta_{n}$. Yang et al. [29] also investigated the sum of the absolute

[^0]values of the eigenvalues of the $A_{e x}$-matrix, which was just the extended graph energy, defined as
\[

$$
\begin{equation*}
\mathcal{E}_{e x}=\mathcal{E}_{e x}(G)=\sum_{i=1}^{n}\left|\eta_{i}\right| . \tag{1.2}
\end{equation*}
$$

\]

We know from [5] that the extended graph energy $\mathcal{E}_{e x}$ probably was the first and earliest modification of the ordinary (on the adjacency matrix based) graph energy \mathcal{E}. It was conceived more than ten years before the Laplacian [11], distance [15], matching [3,28] and Randić [6,7] energies were put forward.

Motivated by [5,29], in this paper we introduce a new degree-based adjacency matrix of the graph G, written by $A_{d b}(G)$. It is defined so that its (i, j)-entry is equal to $\frac{d_{i}+d_{j}}{d_{i} d_{j}}$ if $v_{i} \sim v_{j}$ and 0 otherwise. In fact, on the one hand, $A_{d b}(G)$ may be viewed as a new type of weighted adjacency matrix. On the other hand, the sum of the inverse for each non-zero entry of $A_{d b}$ is just the $2 \cdot \operatorname{ISI}(G)$, where

$$
\operatorname{ISI}(G)=\sum_{i j \in E_{G}} \frac{1}{\frac{1}{d_{i}}+\frac{1}{d_{j}}}
$$

This invariant is called the inverse sum indeg index. It was selected in Vukičvić and Gašerov [27] as a significant predictor of total surface area of octane isomers and for which the extremal graphs obtained with the help of MathChem have a particularly simple and elegant structure. The mathematical properties of $\operatorname{ISI}(G)$ were extensively studied in [1,8,25,27]. Along this line, it is natural and interesting for us to study the spectral properties of $A_{d b}(G)$.

Note that $A_{d b}$ is a real symmetric matrix of order n. Hence, all its eigenvalues are real and can be arranged as $\varrho_{1} \geqslant \varrho_{2} \geqslant \cdots \geqslant \varrho_{n}$, where the largest eigenvalue ϱ_{1} is called the weighted spectral radius of the graph G.

The modification of the adjacency graph energy \mathcal{E} [10] motivates our approach to introduce another type of energy, namely the weighted energy, for the graph G, which is defined as

$$
\begin{equation*}
\mathcal{E}_{d b}=\mathcal{E}_{d b}(G)=\sum_{i=1}^{n}\left|\varrho_{i}\right| \tag{1.3}
\end{equation*}
$$

In the later part of this paper we shall need two graph invariants. One is the first Zagreb index $M_{1}[14,19,20,31]$ of G, which is defined as

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2}
$$

The other one is the index M^{*} of G which is defined as

$$
M^{*}=M_{G}^{*}=\sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{i} d_{j}} .
$$

As usual, by $K_{p, q}(p+q=n), K_{n}$ and $K_{1, n-1}$ we denote, respectively, the complete bipartite graph, the complete graph and the star on n vertices. For other undefined notation and terminology from graph theory and matrix theory, the readers are referred to $[2,30]$.

The rest of the paper is organized as follows. In Section 2, we state some preliminary results, needed for the subsequent sections. In Section 3, we give some lower and upper bounds on the weighted spectral radius and characterize the extremal graphs. In the last section, we obtain some lower and upper bounds on the weighted graph energy and characterize the extremal graphs.

2. Lemmas

In this section, we state some previously known results that are needed in the next two sections.
Lemma 2.1 [29]. If C is a real symmetric $n \times n$ matrix with eigenvalues $\xi_{1} \geqslant \xi_{2} \geqslant \cdots \geqslant \xi_{n}$, then for any $\mathbf{x} \in \mathbf{R}^{n}$, such that $x \neq 0$,

$$
\mathbf{x}^{T} C \mathbf{x} \leqslant \xi_{1} \mathbf{x}^{T} \mathbf{x}
$$

Equality holds if and only if \mathbf{x} is an eigenvector of C corresponding to the largest eigenvalue ξ_{1}.
Lemma 2.2 [13]. Let $C=\left(c_{i j}\right)$ and $D=\left(d_{i j}\right)$ be real symmetric, non-negative matrices of order n. If $C \geqslant D$, i.e., $c_{i j} \geqslant d_{i j}$ for all i, j, then $\xi_{1}(C) \geqslant \xi_{1}(D)$, where ξ_{1} is the largest eigenvalue.
Lemma 2.3 [23]. Let C be a real symmetric matrix of order n, and let C_{k} be its leading $k \times k$ submatrix. Then, for $i=1,2, \ldots, k$,

$$
\xi_{n-i+1}(C) \leqslant \xi_{k-i+1}\left(C_{k}\right) \leqslant \xi_{k-i+1}(C)
$$

where $\xi_{i}(C)$ is the ith largest eigenvalue of C.
Lemma 2.4 [12]. Let G be a connected graph of order n with m edges. Then

$$
\lambda_{1}(G) \leqslant \sqrt{2 m-n+1}
$$

https://daneshyari.com/en/article/10149803

Download Persian Version:
https://daneshyari.com/article/10149803

Daneshyari.com

[^0]: in B.X. acknowledges the support from the Jiangxi Natural Science Foundation (Grant No. 20171BAB201009) and the Jiangxi Provincial Science and Technology Project (Grant No. KJLD12067) and S.L. acknowledges the financial support from the National Natural Science Foundation of China (Grant Nos. 11671164, 11271149).

 * Corresponding author.

 E-mail addresses: Iscmath@mail.ccnu.edu.cn (S. Li), 616178412@qq.com (R. Yu), qzhao@hubu.edu.cn (Q. Zhao).

