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A B S T R A C T

Human-like rewriting, which is an algebraic reasoning system imitating human intelligence of problem solving,
is proposed in this work. In order to imitate both learning and reasoning aspects of human cognition, a deep
feedforward neural network learns from algebraic reasoning examples produced by humans and then uses learnt
experiences to guide other reasoning processes. This work shows that the neural network can learn human’s
behaviours of solving mathematical problems, and it can indicate suitable directions of reasoning, so that in-
telligent and heuristic reasoning can be performed. Moreover, human-like rewriting bridges the gap between
symbolic reasoning and biologically inspired machine learning. To enable the neural network to recognise
patterns of symbolic expressions with non-deterministic sizes, the expressions are reduced to partial tree re-
presentations and then vectorised as numeric features. Further, the centralisation method, symbolic association
vectors and rule application records are used to improve the vectorised features. With these approaches, human-
like rewriting shows satisfactory performance on the tasks of solving linear equations and computing derivations
and indefinite integrals.

Introduction

Reasoning and learning are two main aspects of human cognition.
Human reasoning can be considered as a process of using previously
acquired knowledge to solve problems, and this process can be simu-
lated using heuristic search (Duris, 2018). Human learning, on the other
hand, can be considered as a process of acquiring knowledge from the
real world, and this process can be simulated using artificial neural
networks which is a kind of biologically inspired machine learning
models (Rasheed, Amin, Sultana, & Bhatti, 2017). In order to imitate
human cognition, machines are expected to imitate both reasoning and
learning abilities. Although the reasoning ability could be imitated via
symbolic reasoning techniques, and the learning ability could be imi-
tated via machine learning techniques, it was still challenging to in-
tegrate symbolic reasoning and machine learning in effective ways
(Garcez et al., 2015). In the field of symbolic reasoning, much work has
been done on using formal methods to model reliable reasoning pro-
cesses (Chang & Lee, 1973). For instance, algebraic reasoning could be
modelled using first-order predicate logics or even higher-order logics,
and these logics were usually designed by experienced experts (Bundy

& Welham, 1981; Nipkow, Paulson, & Wenzel, 2002). In the field of
machine learning, deep architectures were used to learn speech features
and image features from data (Lecun, Bengio, & Hinton, 2015;
Mohamed, Dahl, & Hinton, 2012; Sun, Liang, Wang, & Tang, 2015).
However, symbolic reasoning and machine learning seemed to be two
independent processes. The connection between the two processes was
relatively weak. As a result, it was difficult for a machine to imitate
simultaneously both reasoning and learning abilities. To bridge the gap
between symbolic reasoning and machine learning, this research ex-
plores the possibility of using deep architectures to learn logics of al-
gebraic reasoning. In this research, deep neural networks are trained to
solve mathematical problems, such as finding the solution of an equa-
tion and calculating the differential or integral of an expression.

Rewriting is frequently used in the field of algebraic reasoning. The
core concept of rewriting is to simplify a reasoning process by replacing
expressions with equivalent ones (Bundy, 1983). Usually, rewriting is
based on a tree-manipulating system, as many algebraic expressions can
be represented by using tree structures, and the manipulation of sym-
bols in the expressions is equivalent to the manipulation of nodes,
leaves and sub-trees on the trees (Rosen, 1973). To manipulate symbols,
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a rewriting system usually uses one way matching, which is a restricted
application of unification, to find a desired pattern from an expression
and then replaces the pattern with another equivalent pattern (Bundy,
1983). In order to reduce the search space, rewriting systems are ex-
pected to satisfy the properties of termination and local confluence (i.e.
the Church-Rosser property). In other words, the termination property
requires that any rewriting process can eventually stop, and the local
confluence property requires that any expression can be rewritten as
one and only one simplest form. Totally, the expression should be re-
written as the simplest form within finite steps (Huet, 1980; Rosen,
1973). The formal definitions of rewriting, termination and local con-
fluence are provided by Definitions 1–3 in Section “Standard re-
writing”. In order to make a system be terminating and locally con-
fluent, the design of the system may start from small sub-systems,
because proving termination and local confluence of a smaller system is
usually easier than proving those of a larger system (Bundy & Welham,
1981). After multiple sub-systems have been designed, they can be
combined into a whole system. The whole system is terminating and
locally confluent, because the direct sum of two Church-Rosser systems
holds the same property (Toyama, 1987). Some previous work has fo-
cused on the Church-Rosser property of rewriting systems. For example,
the Knuth-Bendix completion algorithm was used to solve the problem
of local confluence (Knuth and Bendix, 1983), and Huet (1981) pro-
vided a proof of correctness for this algorithm. Additionally, de-
pendency pairs and semantic labelling were used to solve the problem
of termination (Arts & Giesl, 2000; Zantema, 1995).

Deep architectures have been used in many fields of artificial in-
telligence, including speech recognition (Mohamed et al., 2012),
human face recognition (Sun et al., 2015), natural language under-
standing (Sarikaya, Hinton, & Deoras, 2014), reinforcement learning for
playing video games (Mnih et al., 2015) and Monte Carlo tree search for
playing Go (Silver et al., 2016). Recently, the use deep architectures to
simulate reasoning behaviours has become an emerging topic. For in-
stance, Irving et al. (2016) have proposed DeepMath which uses various
deep neural networks to guide premise selection of automated theorem
proving. Moreover, Serafini and Garcez (2016) have proposed logic
tensor networks to combine deep learning with logical reasoning.
Further, Garnelo, Arulkumaran, and Shanahan (2016) have used re-
inforcement learning to perform the interaction between symbolic
reasoning and neural learning. Additionally, Cai, Ke, Xu, and Su (2017)
have used multi-layer perceptrons to manipulate variables in logical
expressions and discover knowledge from the logical expressions.

In this research, deep architectures are used to guide algebraic re-
writing processes. This technique is called human-like rewriting, as it is
adapted from standard rewriting and can imitate human’s behaviours of
using rewrite rules after learning from algebraic reasoning schemes.
Contributions of this work are listed as follows.

• Human-like rewriting, which is the combination of standard re-
writing and artificial neural networks, has been proposed in this
work.

• This work has demonstrated that deep feedforward neural networks
are able to learn human’s behaviours of reasoning and use learnt
experiences to guide other reasoning processes.

• This work proposed vectorised representations of symbolic expres-
sions, which bridges the gap between formalised reasoning and
biologically inspired machine learning.

The rest of this article is organised as follows. Section “Standard
rewriting” reviews standard rewriting. Section “Human-like rewriting”
introduces human-like rewriting which is the core method of this work.
Section “Methods for system improvement” introduces three methods
for system improvement. Section “Experiments” evaluates the proposed
human-like rewriting and the three improvement methods. Section
“Conclusion” concludes this work.

Standard rewriting

Rewriting is an inference technique for replacing expressions or
subexpressions with equivalent ones. The definition of rewriting is as
follows (Bundy, 1983).

Definition 1 (Rewriting). Rewriting requires a source expression s and a
set of rewrite rules τ . Let ⇒l r denote a rewrite rule in τ t, a
subexpression of s, and θ the most general unifier of one way
matching from l and t. A single rewriting step of inference can be
formed as:

⇒ ∈ ≡s t l r τ l θ t
s r θ

( ) ( ) [ ]
( [ ]) (1)

Standard rewriting is to repeat the above step until no rule can be
applied to the expression further.

In Eq. (1), θ is only applied to l, but not to t. The reason is that one
way matching, which is a restricted application of unification, requires
that all substitutions in a unifier are only applied to the left-hand side of
a unification pair. Below is an example of rewriting.1 Given two rules of
the Peano axioms2:
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In Eq. (1), the set of rewrite rules τ is expected to satisfy the
properties of termination. The termination property requires that any
rewriting process can eventually stop. Formally, the termination
property is defined as follows (Huet, 1980).

Definition 2 (Termination of Rewriting). A set of rewrite rules τ is
terminating if any expression s can be rewritten as a normal form t such
that no rewrite rule can be applied to t.

For instance, the chain rule in calculus ⇒ ·D f
D x
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D u
D x
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The above process means that the chain rule may not be used in
standard rewriting, though it is an important rule. Similarly, the com-
mutativity rule ∘ ⇒ ∘x y y x , where ∘ is an addition, a multiplication, a
logical conjunction, a logical disjunction or another binary operation
satisfying commutativity, may not be used in standard rewriting.

Moreover, in Eq. (1), the set of rewrite rules τ is expected to satisfy
the properties of local confluence. Local confluence requires that all
branches of rewriting can lead to the same result. It can be defined as

1We use the mathematical convention that a word is a constant if its first
letter is in upper case, and it is a variable if its first letter is in lower case.
2 More detailed discussions about the Peano axioms can be found in (Pillay,

1981).
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