JID: IJMF

ARTICLE IN PRESS

International Journal of Multiphase Flow 000 (2018) 1-15

[m5G;July 20, 2018;6:0]

Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmulflow

Large-eddy simulation of multiphase combustion jet in cross-flow using flamelet model

Xu Wen, Kun Luo, Yujuan Luo, Haiou Wang, Jianren Fan*

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China

ARTICLE INFO

Article history: Received 11 February 2018 Revised 26 May 2018 Accepted 19 June 2018 Available online xxx

Keywords: Pulverized coal combustion Flamelet model Flame-flame interactions Wall heat losses Jet in cross-flow

ABSTRACT

In this work, large-eddy simulations of pulverized coal combustion are conducted using the flamelet model, in which the devolatilization, char surface reactions, radiation and flame-wall interactions (FWI) are all considered. The mixings between the oxidizer and the volatiles/char off-gases are described with two mixture fractions Z_{vol} and Z_{char} , while the interphase heat transfer and progress of reactions are described with the manifolds of total enthalpy H_e and reaction progress variable Y_{PV} , respectively. The turbulence-chemistry interactions are considered with the presumed probability density functions. Standard pulverized coal combustion submodels are used to characterize the coal combustion sub-processes of devolatilization, char surface reactions, radiation, etc. Characteristics of pulverized coal combustion jet in cross-flow (JICF) are analyzed in detail. Particularly, the effects of the flame-flame interactions (FFI) and the wall heat losses (WHL) on the pulverized coal flame structure and thermo-chemical quantities distributions are studied through both qualitative and quantitative analyses. The results show that the overall flame temperature with twin jets in cross-flow (TJICF) is higher than that with single jet in crossflow (SJICF) due to the FFI. The gas velocities in different directions have different sensitivities to the FFI, and the particle residence time/trajectory is influenced by the FFI. Three stages of FFI are identified, i.e., separated flames, merging flames and a merged flame. When the effects of WHL are neglected, the flame front becomes more wrinkling, the flame base moves towards the injectors, and the coal particles are ignited earlier. The pulverized coal flame structure at the lee-side of the flame front is more complicated than that at the leading-edge due to the different flow dynamics, and many burning pockets can be observed at the lee-side.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Pulverized coal combustion is expected to remain a major source of electricity generation in many countries as coal reserves are much more abundant than those of other fossil fuels (Shaddix, 2012). In most pulverized coal-fired power plants, a tangential firing method is adopted due to its advantages of combustion stability, wide coal adaptability, and high combustion efficiency. However, the underlying physics governing the pulverized coal combustion processes in such systems are still not well understood. Since the temperature in the furnace is extremely high, experiments are difficult to conduct to provide reliable information (Kurose et al., 2009). Computational fluid dynamics (CFD) has become a powerful tool to describe pulverized coal combustion because it can provide detailed information of the distributions of temperature, species concentrations, etc. over the entire computational field (Wen et al., 2018, 2017a, 2017b, 2017c; Rieth et al., 2017; Messig et al., 2017; Watanabe et al., 2017; Stein et al., 2013; Stöllinger et al., 2013).

To date, simulations performed in the industrial furnace mainly employed the RANS (Reynolds-averaged Navier Stokes) approach due to its affordable computational cost. However, it is well-known that the unsteady motions which are important to flame dynamics cannot be predicted by RANS simulations. Large-eddy simulation (LES), on the other hand, offers many advantages when compared to the RANS technique in which large-scale flow structures are resolved and the unsteady flame behaviours are captured. Since the pioneering work conducted by Kurose and Makino (2003), significant progresses on LES of jet pulverized coal combustion have been made in recent years (Wen et al., 2017a; Rieth et al., 2017; Watanabe et al., 2017; Stein et al., 2013).

* Corresponding author.

E-mail address: fanjr@zju.edu.cn (J. Fan).

https://doi.org/10.1016/j.ijmultiphaseflow.2018.06.017 0301-9322/© 2018 Elsevier Ltd. All rights reserved.

Please cite this article as: X. Wen et al., Large-eddy simulation of multiphase combustion jet in cross-flow using flamelet model, International Journal of Multiphase Flow (2018), https://doi.org/10.1016/j.ijmultiphaseflow.2018.06.017

2

Nomenclature		σ
		τ_d I
Variables		ε_p I
A_c	Pre-exponential factor in char-oxidation model	5 1
A_s	Particle surface area	ξ _{ox} Ι
A_{v}	Pre-exponential factor in devolatilization model	ξ _{pro} I
C_D	Drag coefficient	ξ _{vol} Ι
С _{р, g}	Specific heat of gas phase	ζ Ι
С _{р, р}	Specific heat of coal particle	
D	Scalar molecular diffusivity	Abbrouisti
d_p	Particle diameter	
D_T	Subgrid eddy diffusivity	
Ec	Activation energy in char-oxidation model	
E_{v}	Activation energy in devolatilization model	
G	Incident radiation	FFI I
g _i	Gravity acceleration	FGM I
He	Total enthalpy	FPV I
H _{e. norm}	Normalized total enthalpy	FVM I
Lvol	Latent heat of volatile matter	FWI
m_p	Mass of a single coal particle	ILDM I
m_n^0	Initial mass of a single coal particle	JICF J
M_{X}^{P}	Molecular weight of species X	JPDF J
m_{char}	Mass of char off-gases	LES I
m_{vol}	Mass of volatile matter	LES I
n	Number of particle in the local cell	
Nu	Nusselt number	PPDF I
р	Static pressure	RANS I
Pr	Prandtl number	SGS S
0	Factor used to consider the higher heating rate	SJICF S
0 _{char}	Heat source due to char-oxidation	TCI
Ren	Particle's slip Revnolds number	TJICF
Šr	Temperature source term due to devolatilization	WHL V
-1	and char-oxidation	
Ścx	Two-way coupling term	To predict
S _{ii}	Strain rate	as NO _v SO.
Sc_T	Subgrid Schmidt number	nite rate che

- Separation distance between burners Sd
- Т Gas temperature
- T_f Temperature on the fuel side of flamelet
- Ťр Particle temperature
- Temperature on the oxidizer side of flamelet T_{ox}
- Gas phase velocity и
- u_p V Particle velocity
- Grid cell volume
- Χ Mixing parameter
- Fraction of species *k* in char off-gases Y_{pro, k} Y_{PV} Reaction progress variable Fraction of species k in volatile matter Y_{vol, k}
- Fraction of volatile matter initially in the coal parti- Y_{vol}^* cle
- Ζ Coal particle mixture fraction
- Z''^{2} Mixture fraction variance
- Char off-gases mixture fraction Zchar
- Volatile matter mixture fraction Z_{vol}

Greek symbols

- Absorption coefficient of the gray gas α_g Scalar dissipation rate χ δ_{ij} Kronecker delta function A small positive number (10^{-6}) ϵ Dynamic viscosity μ Subgrid eddy viscosity μ_T Gas phase density ρ
- Particle density ρ_p

- Stefan–Boltzmann constant Particle relaxation time Particle's emissivity A model constant Mass of gas originating from the oxidizer stream Mass of gas originating from the char off-gases Mass of gas originating from the volatile matter Fraction of heat retained by particle due to charoxidation ons Computational fluid dynamics Counter-rotating vortex pair Direct numerical simulation Flame-flame interactions Flamelet-generated manifold Flamelet/progress variable Finite volume method Flame-wall interactions Intrinsic low dimensional manifold let in cross-flow
- Joint probability density function
- Large-eddy simulation
- Large-eddy simulation
- Laser-induced fluorescence Presumed probability density function
- Reynolds-averaged Navier Stokes
- Subgrid-scale
- Single jet in cross-flow
- Turbulence-chemistry interactions
- Twin jets in cross-flow
- Wall heat losses

t the pollutants with slow chemistry time-scales such etc, detailed chemical reaction mechanisms with fimistry are required, which may involve large numbers of species and reactions. Solving problems with such complex chemical reaction schemes in turbulent combustion is challenging for the following reasons (Poinsot and Veynante, 2005): (i) the transport coefficients and chemical reaction rates are complex functions of species mass fractions and temperature, which introduces uncertainties in their evaluations; (ii) the governing equation for each species should be solved, which results in high computational cost. Various approaches have been proposed to reduce chemical schemes, such as intrinsic low dimensional manifold (ILDM) method (Maas and Pope, 1992), flamelet tabulation method (Peters, 1984; Pierce and Moin, 2004; Van Oijen et al., 2001), etc. These reduction methods are promising since they take detailed chemical reaction mechanism into account with a reasonable computational cost. Various flamelet models have been developed to simulate gaseous (Pierce and Moin, 2004) and multiphase combustion (Ruggirello et al., 2012; Pandal et al., 2018; Wen et al., 2018, 2017a, 2017c; Rieth et al., 2017; Messig et al., 2017; Watanabe et al., 2017). Particularly, the flamelet tabulation models for pulverized coal combustion have been commonly used in recent years (Wen et al., 2018, 2017a, 2017c; Rieth et al., 2017; Messig et al., 2017; Watanabe et al., 2017). The flamelet concept for coal combustion was first used to predict single coal particle ignition by Vascellari et al. (2013). Similar work was conducted by Knappstein et al. (2016) using a so-called flamelet-generated manifold (FGM) model (Van Oijen et al., 2001). Watanabe and Yamamoto (2015) for the first time coupled the flamelet approach with a coal combustion model in the context of direct numerical simulation (DNS), in which both the devolatilization and char surface reaction processes were considered. Recently, they extended

Download English Version:

https://daneshyari.com/en/article/10152053

Download Persian Version:

https://daneshyari.com/article/10152053

Daneshyari.com