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H I G H L I G H T S

• Battery modelling for Battery Management Systems.

• Dynamic prediction of battery voltage without any knowledge of the internal chemistry.

• Comparison of various lumped models.

• Including a concentration overpotential improves model accuracy.

• Resistor-Capacitor (RC) pairs may be replaced by particle diffusion equations.

A B S T R A C T

Three different time-dependent lumped battery models are presented, using a limited set of only either three or four fitting parameters. The models all include one
linear (resistive), one non-linear (kinetic) and one time-dependent element, the latter describing the diffusive processes in the battery. The voltage predictive
capabilities of the models versus experimental dynamic load data for a plug-in hybrid vehicle battery are compared. It is shown that models based on a diffusion
equation in an idealized particle perform similarly to a model based on an RC (resistive-capacitor) pair. In addition, by exchanging the RC element by a diffusion
equation in an idealized particle it is also shown that it is possible to reduce the number of needed fitting parameters by one.

1. Introduction

Lithium-ion batteries (LIBs) are widely employed as storage for
electric energy in electric and hybrid electric vehicles. On board the
vehicle, the battery management system (BMS) is responsible for as-
sessing various battery state variables such as energy content, cap-
ability to deliver power and general “health” condition, commonly re-
ferred to as state-of-charge (SOC), state-of-power (SOP) and state-of-
health (SOH), respectively [1]. Whereas SOC and SOH have been ex-
tensively studied in scientific literature, methods for SOP prediction
and assessment seem to have been less explored [2].

State-determination techniques commonly make use of mathema-
tical models, to higher or lower degrees of complexity, for describing
the battery. Physics-based LIB models, the most well-known is most
likely the one developed by Newman and co-workers in the 1990's [3],
make use of partial differential equations for describing and coupling
the transport of electrons, ions and other reacting species in the various
phases (electrolyte, electrodes and metal current conductors). Such
models are typically one-dimensional across the layers of the battery

cell, with an additional dimension used to describe the diffusion of solid
lithium within the electrode particles, comprising a “psuedo-2D” (P2D)
approach. Physics-based models have been successful in capturing the
dynamic behaviour of LIBs for various operational cases, and the de-
tailed description about the electrode environment makes it easy to, for
instance, add parasitic reactions for ageing and capacity fade model-
ling. A drawback is however the need for detailed knowledge about the
characteristics of the individual electrode, separator and electrolyte
materials, which can usually only be obtained by extensive experi-
mental work, although there is work in progress to determine some of
these parameters by ab-initio-based multiscale approaches [4,5].
Around 40 parameters are typically needed for setting up a model, and
this often makes the model unpractical for engineering applications
where knowledge about the internal battery chemistry may be limited.
For low and moderate currents, the Newman model can be simplified
by using a single-particle approach [6,7] wherein the current dis-
tribution effects within the porous electrodes and concentration
changes in the electrolyte are neglected. This approach reduces the total
number of needed parameters somewhat, but setting up even a
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simplified physics-based model and fitting it to battery cell data can still
be a daunting task. The computational load of a physics-based model
may also be comparably high since the need to resolve concentration
and potential gradients in the electrodes and electrode particles may
require a fine computational mesh in the finite element or finite dif-
ference numerical schemes used when solving the model.

A different class of models stems from the equivalent circuit (EC)
approach, wherein a number of simple circuit components such as re-
sistors, capacitors and inductors are coupled together into a circuit with
dynamic voltage characteristics that resemble those of an operating
battery. An EC model typically make use of far less parameters than a
physics-based model, and has a generally lower computational load. A
disadvantage with an EC model is however that there is no way, apart
from the case when only a few circuit components are included, to
directly associate an EC component to a certain part of, or phenomena
in, the battery. An additional complication is that seemingly differently
designed circuits may result in identical mathematical behaviour [8].

Apart from the two modelling approaches mentioned above, there
are also other techniques available for battery modelling such as self-
learning neural networks. Combining elements from both approaches
into hybrid methods is also possible [9] (the single-particle model could
actually be seen as an EC with diffusion resistance elements [7]).

Regardless of modelling technique used, the BMS will have to per-
form continuous parameter estimation of the parameters used in the
battery state-assesment model(s) used on-board [1]. To facilitate
parameter estimation, a requisite for a model is hence not only it's ac-
curacy, and low computational load, but also that the number of
parameters is small, and that the parameters are reasonably un-
correlated, i.e. that they operate mainly on different time scales and/or
affect the voltage differently depending on the magnitude of the battery
load current.

This paper investigates three different variants of a lumped battery
model, all of them encompassing a linear ohmic resistance, a non-linear
charge transfer resistance and a diffusion impedance. Two different
approaches for modelling the diffusion impedance are investigated: 1)
using a common Resistor-Capacitor (RC) circuit element or 2) using a
diffusion equation in an idealized particle. The models are fitted to
experimental battery data, and the difference in results when validating
the models to a second set of data are compared and discussed, with the
evaluation of the models having a SOP application in mind, thus fo-
cusing on the ability to predict the voltage for a given load cycle. (For
experimental reasons and in order to validate the models, the for-
mulations are however based on a given current load input, rather than
power.)

2. Mathematical model

The three different models investigated can be described as lumped
semi-empirical models, defining physics-based voltage losses (over-
potentials) pertinent to ohmic, activation and concentration (diffusion)
losses. A list of the symbols used in the model are shown in Table 1.

The model defines the time-dependent evolution battery cell vol-
tage, Ebatt (V) when subject to a time-dependent battery current load

=I I t( )batt batt (A) using the equation

= + + +E E η η η(SOC)batt OCV ohm act conc (1)

where E (SOC)OCV (V) is the battery open circuit voltage (OCV) as
function of SOC (1), the battery state-of-charge.

The SOC depends on the battery current as
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where Qbatt (C) is the battery capacity.
The overpotential due to ohmic losses in the battery, ηohm (V), is

defined as

=η R Iohm ohm batt (3)

where Rohm (ohm) is the ohmic resistance.
Introducing a non-linear term in the current-voltage dependency

has been shown to improve the accuracy of SOP assessment models [1].
In this work we include an activation overpotential due to charge
transfer processes in the battery, ηact (V), defined using an inverted
Butler-Volmer equation (using anodic and cathodic symmetry factors
equal to 0.5) as
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where R (8.31 −J(molK) 1) is the molar gas constant, F ( −Cmol 1) is Far-
aday's constant, T (K) the temperature and I0 (A) the exchange current.
Equation (4) represents the non-linear relation between current and
potential, commonly found in electrochemical systems.

The third source of voltage losses are due to finite transport rates of
reacting material in the battery, and power prediction has been shown
to be improved also by adding a contribution stemming from a diffusion
impedance [10]. We name this voltage loss the concentration over-
potential ηconc (V). Three different models for determining ηconc (V) are
used in this paper: the RC model, the Kτ model and the τ model. All the
concentration overpotential models make use of a time constant para-
meter τ (s).

The RC model is defined using a Resistor-Capacitor (RC) pair,
coupled in parallel. This circuit element is commonly used in EC
models. The resulting overpotential is defined by the following ordinary
differential equation (ODE)

+ =τ
η

t
η R I

d
d c
conc

conc batt (5)

where Rc (ohm) is the resistance. The time constant for this model is
related to Rc and C (F), the capacitance of the RC circuit, according to

=τ R Cc (6)

The RC model hence uses Rohm, I0,τ and Rc as fitting parameters.
The Kτ model for the concentration overpotential resembles in

many ways the single-particle-model [7], with the additional assump-
tion that only one of the electrodes contributes to the diffusion-related
voltage losses on the cell level. For this case the two electrode particles
in the single particle model can be replaced by one particle only. The
diffusion equation solving for a local particle state-of-charge variable S
(1) is defined on a one-dimensional geometry, using a dimensionless

Table 1
Symbols used in the model.

Symbol Unit Description

C F Capacitance
d 1 Dimension number
Ebatt V Battery voltage
EOCV V Battery open circuit voltage
F −Cmol 1 Faraday's constant, 96485 C/mol
Ibatt A Battery current
I0 V Exchange current
K V Battery voltage dependency on surface SOC
Q C Battery capacity
R −J(molK) 1 Molar gas constant, 8.1345 J/(mol K)

RC Ohm Resistance in RC circuit element
Rohm Ohm Ohmic resistance
S 1 Local SOC in particle
SOC 1 Battery SOC
T K Temperature
X 1 Particle spatial variable
σ V Standard deviation
ηact V Activation overpotential
ηconc V Concentration overpotential
ηohm V Ohmic overpotential
τ s Diffusion time constant
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