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A B S T R A C T

In this paper, the free vibration of viscoelastic nanotube under longitudinal magnetic field is investigated. The
governing equation is formulated by utilizing Timoshenko beam model and Kelvin-Voigt model based on the
nonlocal strain gradient theory. The local adaptive differential quadrature method (LADQM) is applied in the
analyzing procedure. We also investigated the influences of the nonlocal parameter, structural damping coef-
ficient, material length scale parameter and the longitudinal magnetic field on the natural frequencies of the
system. The results of this research may be helpful for understanding the potential applications of nanotubes in
Nano-Electromechanical System.

1. Introduction

Carbon nanotubes (CNTs) are essential structural elements used in
several emerging Nano-Electromechanical System(NEMS) applications
[1,2], like nano-oscillators [3], nano-scale clocks [4], parametric am-
plifiers [5], nano resonators [6] and so on.

As the size of CNTs is extremely small, the material microstructure's
nanoscale size effect becomes important. In recent years, by considering
the effect of material length, several theories have been proposed to
investigate the behavior of nanostures, like nonlocal elasticity theory
[7–23], strain gradient theory [24,25] and modified couple stress
theory [26,27]. However, recent researches show that the individual
nonlocal elastic theory or strain gradient elasticity theory has some
limitations on identifying the size-dependent effect of CNTs [28–30].
The nonlocal elastic models can account for softening stiffness with
increasing nanoscale parameter. However, the stiffness enhancement
effect, which can be observed from both the experimental observation
and the gradient elasticity (or modified couple stress) theories, cannot
be characterized explicitly. Assuming that the materials cannot be
modeled as collections of points, the gradient elasticity theories provide
the classical equations of elasticity with additional higher-order strain
gradient terms. The nonlocal elasticity theory and the gradient theory
are quite different in describing physical characteristics of materials
and structures at nanoscale. To overcome these limitations, Lim et al.
[30] proposed the nonlocal strain gradient theory, which combined the
nonlocal elastic theory with the strain gradient theory. It was shown

that the results based on this theory is highly consistent with molecular
dynamics simulation (MDS) results and has numerous applications in
nanostructures. Much worked has been done based on the nonlocal
strain gradient theory, either for wave phenomenon and vibration
properties of nanoparticles, nanoscale beams, nanoshells or nanoplates
[31–36]. Ebrahimi et al. [33] researched the wave propagation of an
inhomogeneous functionally graded nanoplate subjected to nonlinear
thermal loading by means of nonlocal strain gradient theory. Free vi-
bration of nonlocal strain gradient beams which is made of functionally
graded material was analyzed by Li et al. [34]. Based on the nonlocal
strain gradient theory, Zhen and Zhou [35] investigated the transverse
wave propagation in fluid-conveying viscoelastic single-walled carbon
nanotubes (SWCNTs) with surface effect under multi-physics fields. The
above literature show that the nonlocal strain gradient theory is reliable
in describing CNTs' size effect. Karami et al. [36] investigated the wave
dispersion in anisotropic doubly-curved nanoshells based on the non-
local strain gradient theory and a high-order shell theory.

Experiments showed that CNTs exhibit viscoelastic properties when
temperature ranges from −196 °C to 1000 °C [37]. Chang and Lee [38]
studied vibration behavior of a simply supported carbon nanotube
using the nonlocal viscoelasticity theory in consideration of the thermal
and foundation effects. Pang et al. [39] investigated the transverse
wave propagation of viscoelastic SWCNTs adhered by surface materials
based on nonlocal elasticity and Kelvin-Voigt model. Tang et al. [40]
researched the viscoelastic wave propagation in an embedded viscoe-
lastic single-walled carbon nanotubes(SWCNT) utilizing the nonlocal
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strain gradient theory.
Furthermore, the actual working environment of nanotubes often

contains complex external physical factors, such as magnetic field,
electric filed, and temperature field. In some applications of na-
noengineering, the study on dynamic characteristic of CNTs under
magnetic field is useful. The effect of longitudinal magnetic field on
wave dispersion characteristics of equivalent continuum structure of
SWCNTs embedded in elastic medium is studied by Narendar et al.
[41]. Hosseini and Goughari [42] investigated the effect of a long-
itudinal magnetic field on the transverse vibration of a magnetically
sensitive SWCNT conveying fluid. Based on nonlocal strain gradient
theory and Rayleigh beam theory, the wave propagation analysis in
viscoelastic SWCNTs is carried out by Li et al. [43], and the influences
of longitudinal magnetic fields and surface effects on the properties of
wave propagation are discussed. Karličić et al. [44] studied the non-
linear vibration and dynamic stability of a simply supported SWCNT
under the influence of both the longitudinal magnetic field and time-
varying axial load within the framework of the nonlocal elasticity
theory.

To the best of the authors' knowledge, for the viscoelastic nanotubes
under longitudinal magnetic field, the vibration analysis based on
nonlocal strain gradient Timoshenko beam model has not been ad-
dressed. In this paper, we consider a cantilevered Timoshenko model to
analyze the vibration characteristics of viscoelastic nanotubes under
longitudinal magnetic field based on nonlocal strain gradient theory.
The local adaptive differential quadrature method (LADQM) is used in
analysis. The influences of the nonlocal parameter, structural damping
coefficient, material length scale parameter and the longitudinal mag-
netic field on the natural frequencies are all elucidated. The results of
this research may be helpful for understanding the potential applica-
tions of CNTs in NEMS.

2. Nonlocal strain gradient model

According to the nonlocal strain gradient theory [30], the total
stress fields are composed of two parts, i.e. the classical nonlocal stress
σ and the higher-order nonlocal stress σ(1),

= − ∇σt σ .(1) (1)

The classical nonlocal stress σ and the higher-order nonlocal stress
σ(1) are defined as

∫= ′ ′α e a dVσ x x C ε x( , , ) : ( ) ,
V 0 0 (2)

∫= ′ ∇ ′l α e a dVσ x x C ε x( , , ) : ( ) ,
V

(1) 2
1 1 (3)

where ′α e ax x( , , )0 0 and ′α e ax x( , , )1 1 are the nonlocal attenuation
functions associated with the strain tensor ε and the strain gradient
tensor ∇ε, respectively. ∇ is the Laplace operator, and C is the fourth-
order elasticity tensor. e0 and e1 are constants related to the materials.a
is the length of carbon-carbon bond for CNTs and e a0 , e a1 are nonlocal
parameters. l is the material length scale parameter introduced to in-
dicate the significance of higher-order strain gradient stress field.

Since the integral constitutive is difficult to solve, here a simplified
differential form is used. Suppose that the two nonlocal kernel functions

′α e ax x( , , )0 0 and ′α e ax x( , , )1 1 satisfy the conditions given by Eringen
[8], similarly, a more general and extended constitutive equation in a
differential form can be used in the nonlocal functions

= − ∇ =L e a i1 ( ) , 0,1.i i
2 2 (4)

Suppose = =e e e0 1, by applying Eq. (4) to Eq. (1), we get

− ∇ = − ∇ ∇ea C ε lt C ε[1 ( ) ] : : .2 2 2 (5)

For a beam type structure, according to literature [30,45], the
constitutive relation can be simplified as:

− ∇ = − ∇ea t l E z ε[1 ( ) ] (1 ) ( ) ,xx xx
2 2 2 2 (6)

− ∇ = − ∇ea t l G z γ[1 ( ) ] (1 ) ( ) .xz xz
2 2 2 2 (7)

Here E z( ) is the elastic modulus and G z( ) is the shear modulus. txx
and txz denote the axial stress and the shear stress, respectively. εxx and
γxz denote the axial strain and the shear strain respectively.

Literature have shown that the constitutive relation (6) and (7) can
explain the size-dependent phenomena of nano-materials reasonably
and agree well with the results by the molecular dynamics simulations
[30].

3. Mathematical model of viscoelastic nanotube under
longitudinal magnetic field

In this article, the vibration characteristics of viscoelastic nanotube
is researched utilizing the nonlocal strain gradient Timoshenko beam
theory. For Timoshenko beam, the axial strain is

=
∂
∂

ε z
ψ
x

,xx (8)

and the shear strain is

= + ∂
∂

γ ψ w
x

,xz (9)

where z is the normal to the x-axis, ψ is the rotation angle of the beam
cross section, and w is the transverse displacement of the beam.

Substitute Eqs (8) and (9) into Eqs (6) and (7), and consider the
viscoelastic property of nanotube with Kelvin-Voigt model, then we get
the following nonlocal constitutive relation
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where τd is the structural damping coefficient which represents the
viscoelasticity of CNTs.

The nonlocal bending moment M and the nonlocal shear force Q are
defined as

∫=M zt dA,
A xx (12)

∫=Q t dA,
A xz (13)

where A is the cross section of the tube.
Integrating Eqs. (10) and (11), we get
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where κ is the shear correction factor which depends on the material.
The general equations of nonlocal viscoelastic Timoshenko beam,

which include the external Lorentz force of longitudinal magnetic field
are

∂
∂
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where ρ is the mass density, t is time, and I is the second moment of the
cross section. q represents the external Lorentz force induced by long-
itudinal magnetic field [44] and it is expressed as

= ∂
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where η denotes the magnetic permeability, and Hx is the component of
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