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A B S T R A C T

Full-field simulations with synthetic microstructure offer unique opportunities in predicting and understanding
the linkage between microstructural variables and properties of a material prior to or in conjunction with ex-
perimental efforts. Nevertheless, the computational cost restrains the application of full-field simulations in
optimizing materials microstructures or in establishing comprehensive structure-property linkages. To address
this issue, we propose the use of machine learning technique, namely Gaussian process regression, with a small
number of full-field simulation results to construct structure-property linkages that are accurate over a wide
range of microstructures. Furthermore, we demonstrate that with the implementation of expected improvement
algorithm, microstructures that exhibit most desirable properties can be identified using even smaller number of
full-field simulations.

1. Introduction

While traditional trial and error has served well in designing ma-
terial microstructures with desired or even enhanced properties and
performance, computational means to aid microstructure design are
highly desirable for further accelerating materials design.
Unfortunately, the linkage between microstructure and properties is a
vastly complex one. The sheer complexity in quantifying the geometry
of the microstructure coupled with the uncertainty brought about by
how different phases mechanically interact given specific structures are
only two of many frustrations in computationally aided microstructure
design.

There are several approaches available for establishing structure-
property linkages. Some of the conventional approaches include ana-
lytical approach based on statistical continuum theories [1–3], mean-
field approach based on Eshelby’s inclusion problems [4–6], numerical
approach based on finite element method (FEM). The approach based
on statistical continuum theories, when successfully established, is
computationally very cheap. Nonetheless, the approach is hindered by
difficulties regarding the derivation of analytic expressions for Green’s
function kernels and the convergence of the series expansions employed
in the approach [7,8]. Mean-field approach is also known to be com-
putationally cheap. However, the approach is unable to predict stress or

strain localization and often cannot take into account complex mor-
phology and spatial distribution of differing phases. The numerical
approach involving FEM is often limited by its computational cost. To
date, several works that employed a framework that establishes pro-
cess-structure-property (PSP) linkages using low dimensional re-
presentation of microstructures and regression models as surrogate
models are available [9–14]. In the framework, microstructures are first
quantified using two-point correlation statistics. Then, principal com-
ponent analysis (PCA) is applied to the statistics to reduce its dimen-
sion. Finally, a surrogate model is constructed using the low dimen-
sional representation of microstructures as input variables. Some of
these works employed full-field simulations to capture the PSP linkages
[9–14]. In particular, Latypov et al. [9] captured structure-property
(SP) relations using microstructure based simulation results on syn-
thetic microstructures for multivariate regression.

The advantage of full-field simulations with synthetic micro-
structures is that these simulations can quantitatively evaluate how
microstructural variations affect the mechanical properties of materials
[9,15]. This type of modelling approach already demonstrated its ef-
fectiveness in describing and predicting mechanical behavior of com-
posites [16], steels [17–20], and other alloys [21–23]. Despite their
merits, microstructure based modelling techniques suffer from their
high computational cost. In the framework introduced above, the issue
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is mainly addressed by constructing an approximate model. Approx-
imate model, or surrogate model, is any model that can mimic the
behavior of full-field models at a fraction of their computational cost.
Nevertheless, any surrogate model to replace full-field simulations will
still require output from the simulations. Consequently, the time it takes
to develop an accurate surrogate will be proportional to the number of
the simulations necessary. Therefore, robust surrogate modelling with
an efficient sampling scheme is necessary to expedite the process of
constructing SP linkages over a wide range of microstructures.

New opportunities for surrogate modelling have opened up with the
recent surge of interest in machine learning (ML) techniques. Many ML
methods such as artificial neural network models [24], Gaussian pro-
cess (GP) based methods [25], decision-tree and random forest models
[26], and kernel-based methods [27] can serve as accurate surrogate
models. Among these methods, GP methods offer a principled approach
in dealing with model uncertainty. In particular, Gaussian process re-
gression (GPR) can predict unobserved values as well as their un-
certainty. This allows one to selectively conduct full-field simulations
where high uncertainty in the ML model is expected. Furthermore, GPR
is known to be suitable for optimization of expensive black-box simu-
lations via Efficient Global Optimization (EGO) method based on ex-
pected improvement (EI) algorithm [28], making GPR a very attractive
approach for microstructure optimization using full-field simulations.
In this work, we extended the recently developed data-driven frame-
works for SP linkages [9–14] by combining synthetic microstructure
based simulations and GP based ML to construct SP linkages. Further-
more, we implemented the EI algorithm to find optimal microstructures
within a large microstructure database. We first demonstrate effec-
tiveness of the approach in constructing an accurate SP linkages over
1100 synthetic two-phase microstructures using only a fraction of the
microstructures for full-field simulations. Afterwards, by implementing
the EI algorithm, we show that the approach can search for an optimal
microstructure that maximizes specific property within the dataset with
even fewer full-field simulations.

2. Methods

2.1. Summary of the method

The overall schematic for the proposed approach is presented in

Fig. 1. Firstly, a database consisting of large amount of synthetic mi-
crostructures are generated (Section 2.2). The microstructures are then
quantified using two-point correlation statistics, which has been suc-
cessfully used in microstructure quantifications for surrogate models
[9–14]. Following the works that establish PSP linkages [9–14], the
two-point correlation statistics of synthetic microstructures is projected
into a low-dimensional space. In our work, multi-dimensional scaling
(MDS) instead of PCA was used as dimensionality reduction technique
for better between-data distances preservation (Section 2.3). Micro-
structure based simulations were conducted with randomly sampled
microstructure dataset. The GPR model was trained with the simulated
results using low-dimensional microstructural variables as input fea-
tures. Afterwards, full-field simulations were preferentially conducted
with microstructure data with highest predicted variance (Section 2.5),
or highest expected improvement for optimization (Section 2.6), until a
specified stopping criteria was reached. There are limited work re-
garding the stopping criteria [29–32]. These works typically utilized
0.001 to 0.002 as stopping criteria. In this study, we adopted a stopping
criteria that terminated the GPR training when the maximum predicted
variance, or EI, reached below 0.0015. GPflow [33] was used to im-
plement GPR and Matlab 2015a was used to perform MDS and PCA. A
Python script was written to implement the overall algorithm shown in
Fig. 1.

2.2. Microstructure generation

In order to construct SP linkages over a wide range of micro-
structural features, a database filled with microstructures reflecting
those features is necessary. In this work, a database consisting of two-
phase microstructures composed of × ×27 27 27 voxels were generated
with periodic boundary condition using the open-source software
DREAM.3D [34]. The size of the synthetic microstructures were se-
lected based on the works by Latypov et al. [9].

We adopted a similar technique used by Latypov et al. [9] to gen-
erate different classes of microstructures by controlling the volume
fraction, size distribution, and aspect ratio of second phase inclusions.
Because inclusions are not allowed to overlap in the inclusion/matrix
microstructures in DREAM.3D, as specified in [9], inclusion/matrix
microstructures with inclusion volume fractions in the range of 5% to
35% and 65% to 95% were generated. Equiaxed two phase

Fig. 1. Schematic of the proposed framework.
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