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A B S T R A C T

We estimate a statistical model to predict the superconducting critical temperature based on the features ex-
tracted from the superconductor’s chemical formula. The statistical model gives reasonable out-of-sample
predictions: ± 9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity,
atomic radius, valence, electron affinity, and atomic mass contribute the most to the model’s predictive accu-
racy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only
gives predictions for superconductors.

1. Introduction

Superconducting materials - materials that conduct current with
zero resistance - have significant practical applications. Perhaps the
best known application is in the Magnetic Resonance Imaging (MRI)
systems widely employed by health care professionals for detailed in-
ternal body imaging. Other prominent applications include the super-
conducting coils used to maintain high magnetic fields in the Large
Hadron Collider at CERN, where the existence of Higgs Boson was re-
cently confirmed, and the extremely sensitive magnetic field measuring
devices called SQUIDs (Superconducting Quantum Interference
Devices). Furthermore, superconductors could revolutionize the energy
industry as frictionless (zero resistance) superconducting wires and
electrical system may transport and deliver electricity with no energy
loss; see Hassenzahl [9].

However, the wide spread applications of superconductors have
been held back by two major issues: (1) A superconductor conducts
current with zero resistance only at or below its superconducting cri-
tical temperature (Tc). Often impractically, a superconductor must be
cooled to extremely low temperatures near or below the boiling tem-
perature of nitrogen (77 K) before exhibiting the zero resistance prop-
erty. (2) The scientific model and theory that predicts Tc is an open
problem which has been baffling the scientific community since the
discovery of superconductivity in 1911 by Heike Kamerlingh Onnes, in
Leiden.

In the absence of any theory-based prediction models, simple em-
pirical rules based on experimental results have guided researchers in
synthesizing superconducting materials for many years. For example,
the eminent experimental physicist Matthias [12] concluded that Tc is

related to the number of available valence electrons per atom. (A few of
these rules came to be known as the Matthias’s rules.) It is now well
known that many of the simple empirical rules are violated; see Conder
[4].

In this study, we take an entirely data-driven approach to create a
statistical model that predicts Tc based on its chemical formula. The
superconductor data comes from the Superconducting Material
Database maintained by Japan’s National Institute for Materials Science
(NIMS) at http://supercon.nims.go.jp/index_en.html. After some data
preprocessing, 21,263 superconductors are used.

To our knowledge, Valentin et al. [19] and our work are the only
papers that focus on statistical models to predict Tc for a broad class of
materials. However, Owolabi et al. [15], Owolabi and Olatunji [14]
focus on predicting Tc for Fe and MgB2 based superconductors respec-
tively.

We derive features (or predictors) based on the superconductor’s
elemental properties that could be helpful in predictingTc. For example,
consider Nb Pd0.8 0.2 with =T 1.98c K. We can derive a feature based on
the average thermal conductivities of the elements. Niobium and pal-
ladium’s thermal conductivity coefficients are 54 and 71W/(m×K) re-
spectively. The mean thermal conductivity is + =(54 71)/2 62.5 W/
(m×K). We can treat the mean thermal conductivity variable as a fea-
ture to predict Tc. In total, we define and extract 81 features from each
superconductor.

We tried various statistical models but we eventually settled on two:
A multiple regression model which serves as a benchmark model, and a
gradient boosted model as the main prediction model which is im-
plemented in our software.

Our software tool to predict Tc and the associated data are available
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at https://github.com/khamidieh/predict_tc and will also be available
at the publisher’s complementary site. We have done our best to make
the software use and access to the data as easy as possible.

Gradient boosted models create an ensemble of trees to predict a
response. The trees are added in a sequential manner to improve the
model by accounting for the points which are difficult to predict. Once a
gradient boosted model is fitted, the weighted average of all the trees is
used to give a final prediction. Gradient boosted models predict well
because they are able to account for the complex interactions and
correlations among the features.

The boosted models were first developed by Schapire [17], Freund
[6]. The boosted models were generalized to gradient boosting by
Friedman [7]. We use the latest improvement called XGBoost (eXtreme
Gradient Boosting) by Chen and Guestrin [1], and the associated open-
source R implementation of XGBoost by Chen et al. [2]. XGBoost is also
available in other popular programming languages such as python and
Julia. The full source code is at https://github.com/dmlc/xgboost.

Anthony Goldbloom, CEO of Kaggle (now a Google company), the
premier data competition site, stated: “It used to be random forest that
was the big winner, but over the last six months a new algorithm called
XGBoost has cropped up, and it’s winning practically every competition
in the structured data category.” You can see the talk at https://www.
youtube.com/watch?v=GTs5ZQ6XwUM. Outside the competition
realm, XGBoost has been successfully applied in disease prediction by
Chen et al. [3], and in quantitative structure activity relationships
studies by Sheridan et al. [18].

Our XGBoost model gives reasonable predictions: an out-of-sample
error of about 9.5 K based on root-mean-squared-error (rmse), and an
out-of-sample R2 values of about 0.92. The numbers for the multiple
regression model are about 17.6 K and 0.74 for the out-of-sample rmse
and R2 respectively. The multiple regression serves as a benchmark
model.

We are able to assess the importance of the features in prediction
accuracy. Features defined based on thermal conductivity, atomic ra-
dius, valence, electron affinity, and atomic mass are the most important
features in predicting Tc. On the downside, simple conclusions such as
the exact nature of the relationship between the features and Tc can’t be
inferred from the XGBoost model.

Valentin et al. [19] also create a model to predictTc. Our approach is
different than Valentin et al. [19] in the following ways: (1) We use
XGBoost versus random forests, (2) we use a larger data set, (3) we use
a single large model to obtain predictions rather than a cascade of
models, (4) we create a larger number features only from the elemental
properties, and (5) most importantly, we quantify the out-of-sample
prediction error.

2. Data preparation

This section describes the detailed steps for the data preparation and
feature extraction. Section 2.1 describes how the element data is ob-
tained and processed. Section 2.2 describes the data preparation from
NIMS Superconducting Material Database. Section 2.3 details how the
features are extracted.

2.1. Element data preparation

The element data with 46 variables and 86 rows (corresponding to
86 elements) are obtained by using the ElementData function from
Mathematica Version 11.1 by Wolfram and Research [20]. Appendix A
lists the information sources for the element properties used by Ele-
mentData. The first ionization energy data came from http://www.
ptable.com/ and is merged with the Mathematica data. About 12% of
the entries out of the 3956 (= ×46 86) entries are missing.

In choosing the properties, we are guided by Conder [4] but we also
use our judgement to pick certain properties. For example, we drop the
boiling point variable, and instead use the fusion heat variable which
has no missing values, and is highly correlated with the boiling point
variable. We had also gained some experience and insight creating
some initial models for predicting Tc of elements only. We settle on 8
properties shown in Table 1.

With the choice of the above variables, we are only missing the
atomic radii of La and Ce; we replace them with their covalent radii
since atomic radii and covalent radii have very high correlation (≈ 0.95)
and approximately on the same scale and range. Some bias may be
introduced into our data with this minor imputation. We add a small
constant of 1.5 to the electron affinity values of all the elements to
prevent issues when taking logarithm of 0.

2.2. Superconducting material data preparation

Superconducting Material Database is supported by the NIMS, a
public institution based in Japan. The database contains a large list of
superconductors, their critical temperatures, and the source references
mostly from journal articles. To our knowledge, this is the most com-
prehensive database of superconductors. Access to the database re-
quires a login id and password but this is provided with a simple re-
gistration process.

We accessed the data on July 24, 2017 at http://supercon.nims.go.
jp/supercon/material_menu. Once logged in, we chose “OXIDE &
METALLIC” material. Fig. 1 shows a screen shot of the menu. We
clicked on the “search” button to get all the data. We obtained 31,611
rows of data in a comma separated file format. The key columns
(variables) were “element”, the chemical formula of the material, and
“Tc”, the critical temperature. Variable “num” was a unique identifier
for each row. Column “refno” contained links to the referenced source.
The next few steps describe the manual clean up process:

1. We remove columns “ma1” to “mj2”.
2. We sort the data by “Tc” from the highest to lowest.
3. The critical temperature for the following “num” variables are

mistakenly shifted by one column to the right. We fix these by re-
cording them under the “Tc” column: 31,020, 31,021, 31,022,
31,023, 31,024, 31,025, 153,150, 153,149, 42,170, 42,171, 30,716,
30,717, 30,718, 30,719, 150,001, 150,002, 150,003, 150,004,
150,005, 150,006, 150,007, 30,712, 30,713, 30,714, 30,715.

4. The following are removed since the critical temperatures seemed to
have been misrecorded; They have critical temperatures over 203 K

Table 1
This table shows the properties of an element which are used for creating features to predict Tc.

Variable Units Description

Atomic Mass Atomic mass units (AMU) Total proton and neutron rest masses
First Ionization Energy Kilo-Joules per mole (kJ/mol) Energy required to remove a valence electron
Atomic Radius Picometer (pm) Calculated atomic radius
Density Kilograms per meters cubed (kg/m3) Density at standard temperature and pressure
Electron Affinity Kilo-Joules per mole (kJ/mol) Energy required to add an electron to a neutral atom
Fusion Heat Kilo-Joules per mole (kJ/mol) Energy to change from solid to liquid without temperature change
Thermal Conductivity Watts per meter-Kelvin (W/(m K)) Thermal conductivity coefficient κ
Valence No units Typical number of chemical bonds formed by the element
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