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A B S T R A C T

Condition monitoring in wind turbines aims at detecting incipient faults at an early stage to improve main-
tenance. Artificial neural networks are a tool from machine learning that is frequently used for this purpose.
Deep Learning is a machine learning paradigm based on deep neural networks that has shown great success at
various applications over recent years. In this paper, we review unsupervised and supervised applications of
artificial neural networks and in particular of Deep Learning to condition monitoring in wind turbines. We find
that – despite a promising performance of supervised methods – unsupervised approaches are prevalent in the
literature. To explain this phenomenon, we discuss a range of issues related to obtaining labelled data sets for
supervised training, namely quality and access as well as labelling and class imbalance of operational data.
Furthermore, we find that the application of Deep Learning to SCADA data is impeded by their relatively low
dimensionality, and we suggest ways of working with higher-dimensional SCADA data.

1. Introduction

As wind turbines are becoming larger and more complex, detecting
technical faults in wind turbines that require unscheduled maintenance
is increasingly important [1,2]. [1] point out that major faults, which
cause more than one day of downtime, represent only 25% of all fail-
ures, but account for 95% of the downtime incurred by wind turbines. It
is therefore in the interest of wind farm operators to predict those major
errors in advance, to prevent critical damage and to optimise main-
tenance schedules. In recent years, the detection of malfunctioning in
wind turbines has been subject to intense research by the scientific
community. In numerous studies, fault detection has been examined at
system level [3,4] as well as for various components such as rotor
blades [5–7] and gearbox [8–10].

Most approaches can be subdivided into model-based (using a nu-
merical model of the wind turbine or its subcomponents), signal pro-
cessing (based on vibration data measured by a condition monitoring
system) and data-driven approaches (based on supervisory control and
data acquisition (SCADA) data) [11]. A thoroughly explored data-
driven approach is to train a normal behaviour model (NBM) that

predicts the value of some state variable of the wind turbine, e.g. active
power or temperatures, as a function of environmental variables and
other state variables. The predicted value is then compared online to
the actually measured value, yielding a residual. Large values or trends
of the residual time series may indicate incipient failure of the turbine.
The NBM approach is closely related to statistical process control
(SPC),1 and indeed the residual time series are frequently transformed
into a control chart such as the exponentially-weighted moving average
(EWMA) chart [3,5,13].

For the estimation of NBM, many authors have used so-termed ar-
tificial neural networks (ANNs) e.g. [14–16]. These are a family of
methods from machine learning that are capable of detecting highly
non-linear relationships in data. When trained in a supervised manner,
they can be used for classification and for regression tasks. The most
widely applied ANN of this type is the multi-layer perceptron (MLP). On
the other hand, unsupervised ANN architectures allow to smooth out
noise and to learn compressed representations of the data. The term
Deep Learning refers to ANNs that are particularly complex and which
have been applied to the fields of image processing [17], natural lan-
guage processing [18] and in particular to machine health monitoring
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1 For an introduction to SPC, see for instance Montgomery [12].
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[19] with noteworthy success.2 There have also been some first appli-
cations to fault detection in wind turbines [5,8,21], which use un-
supervised ANN such as stacked autoencoders (SAE) and stacked re-
stricted Boltzmann machines (RBM) to detect outliers that indicate an
incipient failure in SCADA and vibration data.

In this paper, we review the more recent literature on fault detection
in wind turbines for applications of classical ANNs and Deep Learning.
It is our goal to assess to what degree Deep Learning is applied and to
identify further potentials. Several reviews exist that summarise the
various model-based, signal-processing and data-driven approaches
applied in this field. [22] review papers that assess the performance of
wind turbine gearboxes. Their review, however, considers ANNs only as
one method amongst others and does not focus on ANNs. The same can
be said for [23], who provide a general overview of prediction, op-
eration and condition monitoring in wind turbines. The papers they
review use a broad variety of data-mining and further methods. [24]
provide a review on papers studying fault detection based on SCADA
data. Their focus is on SCADA data rather than any particular method
used for their evaluation. On the contrary, [25] specifically review
applications of ANNs in wind energy systems. With most papers being
dedicated to power prediction, though, they do not focus on fault de-
tection. None of the reviews mentioned here put a focus on Deep
Learning.

The rest of this paper is structured as follows. In the next section, we
provide a concise introduction to ANNs and Deep Learning, also
touching on some common programming frameworks for implementing
these models. We continue by describing NBM and control charts,
which are often used in this field (Section 3). In the fourth section, we
review a selection of studies that apply ANNs and Deep Learning to
fault detection in wind turbines. Finally, we discuss the reviewed arti-
cles with regard to perspectives for applying Deep Learning in this field.

2. Artificial neural networks and Deep Learning

ANNs are quite a seasoned tool, dating back as far as the 1950s [26].
They come in a great range of different flavours, but all have in
common that they are machine learning algorithms that can be used for
regression and classification (supervised learning) and/or for re-
presentation learning (unsupervised) tasks. The most common types of
ANNs for supervised learning are the MLP, the convolutional neural
network (CNN) and the recurrent neural network (RNN). The most
common types of ANNs for unsupervised learning are the (stacked)
RBM and the (stacked) autoencoder. The literature also contains var-
ious combinations and sub-types of these. For an overview see for in-
stance [20,27–30].

2.1. Multi-layer perceptron

An MLP is a fully-connected feed-forward neural network consisting
of the input layer, one or more hidden layers and the output layer.3

Each layer consists of several nodes, which are computational units, and
the nodes of one layer are connected to all nodes of the subsequent
layer via links that are weighted with real numbers as in a directed
weighted graph, as illustrated in Fig. 1. The numeric input data, such as
an observation of SCADA variables, are fed into the MLP, where each
input variable is represented by one node of the input layer. Via the
weighted links, the values ‘flow’ to the nodes of the next layer, where in
each node the weighted sum of all inputs plus a constant bias is com-
puted. This can be expressed as
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where f j is the output of node j, xi are its inputs, wij the weights of the
links connecting it to the previous layer and bj is the bias. The results of
these affine transformations then pass through a non-linear activation
function, which is typically the sigmoid function, the hyperbolic tan-
gent or the so-called rectified linear unit. For instance, the frequently
used sigmoid function yields the transformed output of node j as
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After this transformation, the values are forwarded to all nodes of
the subsequent layer via weighted links and so the process continues,
until the transformed data reach the output layer and pass through the
last activation function. These values are the output of the network. In
summary, an MLP is a non-linear function  →f: n m, where n is the
dimension of the input data and m the dimension of the output data.
Training an MLP means adjusting its weights and biases so that the
MLP's output over a training set approximates the true values (the so-
called labels) as well as possible. Typically, the squared error ρ is used
as a measure of prediction error. Given the label … ∈o x x( , , )n
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where the factor of 1
2
is used to facilitate the derivation of certain

properties. The backpropagation algorithm [32] is used to compute the
gradient of the squared error with respect to the weights and biases.
These gradients can then be used by an optimization algorithm – e.g.
stochastic gradient descent – to adjust the weights. A schematic of
training an MLP is displayed in Fig. 2.

Often, the weights of the MLP are initialised with random values at
the beginning of the training and then iteratively optimized. It has been
found, however, that this procedure leads to increasingly poor results as
the MLP becomes deeper (i.e. as it has more layers), because it is the
nature of the backpropagation algorithm that gradients tend to become
smaller the farther their layer is from the output layer, which is referred
to as the problem of vanishing gradients [27]. This difficulty in training
MLP with more than a few layers might explain why many applications
of MLP use only one hidden layer. However, deeper MLP carry out more
non-linear transformations on the data, so their capacity of

Fig. 1. Schematic of a 3-5-2 MLP. Only links to h3 and o1 are displayed. Data
flow from the input nodes ai via weighted links to each node of the hidden
layer. In each node hj the weighted sum of the incoming links is computed and
transformed via a non-linear activation function, whose output is again for-
warded to the output layer via weighted links. In the output nodes ok , the
weighted sum of all incoming links is computed and transformed via an acti-
vation function, whose output represents the output of the MLP.

2 See LeCun et al. [20] for an introduction to Deep Learning.
3 For a general introduction to ANN and MLP in particular, see Kriesel [31].
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