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There are two types (WSM-I and WSM-II) of the WSMs. The WSMs of different types have various 
topological and transport properties. Besides pure WSM-I and WSM-II, there exists a novel type, dubbed 
“hybrid Weyl semimetal”, which contains the Weyl points of both types. In this Letter we consider the 
hybrid WSM under crossed magnetic and electric fields. The electromagnetic field induces transition 
between different types of spectrum in Weyl point (WP). Thus, hybrid phase of the WSM can be tunable 
using the electromagnetic field. Finally, we proposed a new field-induced type of hybrid WSM in which 
two different regimes of spectrum coexist. In this case, the spectrum near the first WP corresponds to 
electric regime (no Landau levels) and the spectrum in the second WP with opposite chirality corresponds 
to magnetic regime (there are Landau levels).

© 2018 Published by Elsevier B.V.

1. Introduction

Investigation of topological materials is a major topics of mod-
ern condensed matter physics. Besides of new perspectives for fu-
ture electronics, such studies provide a unique information about 
the key phenomena of the quantum field theory. The existence of 
the three types of particles – Dirac, Weyl and Majorana – is one 
of the main predictions of the particle physics. These predictions 
have already been realized in topological materials in a form of 
quasiparticles. While no candidate Weyl fermions were observed 
as fundamental particles in experiments on the high-energy par-
ticles physics. In addition to well-known effects and particles, the 
physics of topological matter contains a number of new exotic re-
sults. Review of the main results in this area is given in Ref. [1–4].

WSMs are one of the most promising topological materials [2], 
[4–14]. The minimal Hamiltonian of the WSMs can be formed at 
the intersection of the Fermi pockets and has the form

Ĥ = ±υF σp + ωηp. (1)

The signs “±” denote the chirality of the Weyl points, p is the 
carrier momentum near WPs: p = h̄(k − k+) near W+ and p =
h̄(k − k−) near W− , υF is the Fermi velocity of carriers, σ =
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σx, σy, σz are the Pauli matrices, ωη = (ω
η
x , ωη

y, ω
η
z ) is the tilt pa-

rameter, η = +1 for the W+ and η = −1 for W− . If υ2
F > ω2, 

where ω2 = ω2
x + ω2

y + ω2
z , then this Hamiltonian describes the 

WSMs-I (WSMs of type-I) with tilted spectrum, and at υ2
F < ω2

this Hamiltonian corresponds to WSMs-II (WSMs of type-II). The 
Hamiltonian (1) gives the following expression for the energy spec-
trum: ε = ±υF |p| + ωηp. Such WPs are still topologically pro-
tected. The WSMs-II have been proposed recently [9–12]. These are 
fermion systems of a new type with a strong violation of Lorentz 
invariance. The compounds WTe2 and MoTe2 are the materials rep-
resenting the family of WSMs-II. It was shown that WTe2 contains 
eight WPs in the Brillouin zone, while MoTe2 is characterized by 
four WPs. The WSMs of different types have different topologi-
cal and transport properties. Topological phase transitions between 
different types of WSMs were discussed in details in Ref. [15]. Be-
sides pure WSMs-I and WSMs-II, there exists a novel type, dubbed 
“hybrid Weyl semimetal” [16], which contains both types of Weyl 
points. Such WSMs can be called type-3/2 WSMs. For example, if 
WP with a positive chirality is type I and the other WP with the 
opposite chirality is type II then we can write that υ2

F >
(
ω+)2

and υ2
F <

(
ω−)2

for such hybrid WSMs. Recent studies of trans-
port properties of these hybrid WSMs [17,18] show that in such 
materials the anomalous Hall transport is realized.

The influence of various external perturbations on the prop-
erties of WSMs is a topic of interest from both the fundamental 
and applied points of view. In particular, Dirac systems exhibit in-
teresting relativistic effects under crossed magnetic and electric 
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Fig. 1. WSM diagram in
(

ωx
υF

, ωz
υF

)
plane without (left) and under magnetic field (right). ER denotes the electric regime. Here we put that ωy = 0.

fields [19–22]. The electric field significantly affects the Landau 
levels (LLs), and accordingly, quantum oscillations. This is due to 
the fact that a cyclotron mass depends on the energy in the case 
of the Dirac spectrum. Recently, Landau quantization and quantum 
magnetic oscillations in WSMs under crossed fields have been in-
vestigated [23–26]. A particularly interesting phenomenon which 
occur under crossed fields is the collapse of LLs, i.e. the disappear-
ance of LLs, when the electron drift velocity becomes equal to the 
Fermi velocity. Another interesting phenomenon (see below) is the 
electromagnetic field-induced transition between different types of 
WSMs. Thus, an electric field can be used as an additional tool to 
control the diamagnetism of Dirac systems.

In this letter we consider the effect of crossed electric and mag-
netic fields on the type of the hybrid WSM spectrum. In the first 
part we consider the electric field induced transition between dif-
ferent types of Landau spectrum. Here we also show a possibility 
of the electric field-induced coexistence of type-I and type-II spec-
tra. In the second part, we apply these results to hybrid WSM and 
discuss some conceptual questions of physics of crossed fields.

2. Changing of Landau spectrum type induced by electric field

As we note above, a spectrum type is defined by the ratio of 
υ2

F and 
(
ωη

)2. The condition υ2
F = (

ωη
)2 corresponds to the phase 

transition point between WSM-I and WSM-II. This transition can 
be attributed to the family of Lifshitz-like phase transitions [15]. 
The DoS has a singularity at this phase transition point. Indeed, in 
the case of Hamiltonian (1) we can obtain the following expression 
for DoS (see [12,13])

ρ0 = 1

(2π h̄)2

υF(
υ2

F − (ωη)2)2

ε2

h̄
(2)

As we can see, point υ2
F = (

ωη
)2

is the pole of DoS. The phase 
diagram in 

(
ωx
υF

, ωz
υF

)
plane is given in Fig. 1(left).

In the presence of the magnetic field we should replace p →
π = p + e/cA in the Eq. (1). Using the Landau gauge we obtain the 
following expression for LLs (details see in [23,24])

ε
η
n = sgn(n)υF

√
2γ 3

0 l−2
H h̄2n + γ 2

0 p2
z + ω

η
z pz, n �= 0, (3)

ε
η
0 = (ηυF γ0 + ω

η
z )pz, n = 0. (4)

In the last equations γ0 =
√

1 −
(
ω

η
x

)2+
(
ω

η
y

)2

υ2
F

. Note that the mag-

netic field doesn’t affect the type of spectrum. The difference be-
tween two types is defined only by the ratio of υ2

F and 
(
ωη

)2
like 

in the case of absence of the magnetic field. The phase diagram in 
the presence of the magnetic field is given in Fig. 1(right).

Let’s consider the influence of the electric field on the Lan-
dau quantization in WSMs. We consider WSM under magnetic 
H = (0, 0, H) and electric E = (0, E, 0) fields. The solution of Lan-
dau quantization problem for the case has the following form

ε
η
n = sgn(n)υF

√
2γ 3

η l−2
H h̄2n + γ 2

η p2
z + ω

η
z pz + υ0 px, n �= 0 (5)

ε
η
0 = (ηυF γη + ω

η
z )pz + υ0 px, n = 0, (6)

where γη =
√

1 − (υ0−ω
η
x )2+

(
ω

η
y

)2

υ2
F

, υ0 = c[EH]/H2. One can see 

that at υ2
F γ

2
η <

(
ω

η
z
)2

the LLs (5) correspond to WSMs-I. From 

the other hand, when υ2
F γ

2
η >

(
ω

η
z
)2

we have LLs of WSMs-II. 

Thus, condition υ2
F γ

2
η = (

ω
η
z
)2

corresponds to the phase transition 
point between WSM-I and WSM-II. This phase transition occurs at 

υ0 = −
√

υ2
F − (

ω
η
y
)2 − (

ω
η
z
)2 + ω

η
x . The magnetic field along the 

Z axis quantifies the motion in the XY plane. The motion in the 
Z direction remains free. Thus, in the presence of the magnetic 
field, the type of the spectrum is determined by the behavior of 
the velocity υn

z = ∂εn/∂ pz . The electric field changes the velocity 
along the Z axis. But the electric field along the Y axis changes 
only the y-th component of the momentum. A natural question 
arises: why does the electric field along the Y axis affect the ve-
locity υz? This is a relativistic effect. This is due to the fact that 
in the case of the relativistic spectrum the velocity υi = ∂ε/∂ pi

depends on all the components of the momentum. This effect ab-
sences in the nonrelativistic system, since in such a case, the i-th 
velocity component is determined only by the i-th component of 
the momentum: υi = pi/m.

In the presence of crossed electric and magnetic fields the fol-
lowing expression for DoS can be obtained

ρ(ε) = 1

L y (2π h̄)2

∫
dpx

∫
dpz

×
∑
α=±

{δ(ε − ε±
0 ) + 2

∞∑
n=1

δ(ε − ε±
n )}, (7)

where α = +1 for electrons and α = −1 for holes. In (7), we take 
into account that zero LL is degenerated twice less than the other 
levels, i.e. 0th LL is chiral. The integration over px is carried out 
from 0 to p0. The value p0 is determined from the degeneracy 
condition for the LLs: p0 = eH L y/c. Applying the Poisson summa-
tion formula

1

2
+

∞∑
n=1

f (n) =
∞∫

0

f (x)dx + 2Re
∞∑

k=1

∞∫
0

f (x)e2π ikxdx (8)
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