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Abstract
This paper applies the mechanics of engineering science and materials
to the understanding of clinical devices used in Orthopaedics and
Trauma. The rigidity of devices is described to be a function of material
stiffness and its geometry relative to the loading axes. Structures are
more rigid under loads that are applied along their long axes and are
more flexible under bending and torsion, which increases with length.
This may be applied to an individual plate, screw or bone and to the
entire construct. Increasing the thickness of a plate greatly increases
rigidity as a third power relationship exists between these variables.
Similarly, increasing the diameter of a rod increases its rigidity by a
fourth power relationship. A hollow cylindrical cross-section, as

found in long bones, provides the most effective rigidity to weight
ratio when complex stresses are applied. This paper provides exam-
ples to reinforce basic structural mechanics applied to medical
devices.
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Introduction

Clinical Trauma and Orthopaedics involves the use of many

implants that either replace the function of or provide temporary

or permanent support to bones to facilitate healing; the general

aim being to remove pain and restore mobility to the patient.

Many of these implants were originally produced empirically,

based on a basic understanding of materials science, mechanics

and bone healing, evolving into an effective device with less

successful designs being abandoned. Increasing understanding of

bone healing and biomechanics alongside advances in design

technology have led to increasingly specific designs that address

particular problems from conception. The aim of this paper is to

provide the reader with an understanding of the function of

structural support devices used in orthopaedic surgery. An

introduction to the basic science of materials is firstly considered

followed by some practical examples.

Introduction to basic science

The rigidity of a structure defines its deformation under loading

and therefore its ability to provide support. This is a function of

the materials used and the shape of the device, with the shape

being surprisingly just as important as the material. In Engi-

neering terms, calculation of a structure’s rigidity will also

change with the direction and type of load applied, as shown in

Figure 1, which shows an example for hollow tubes.

From Figure 1, axial loads generally result in small de-

formations, whereas tangential loads cause bending moments

that produce deformations that will be orders of magnitude

greater and potentially far more important. Torsional loads pro-

duce rotational deformation that increase with length. Addi-

tionally, the deformation of bones, particularly from bending

forces, is restricted in the body by the action of muscles that

attempt to keep bones under axial compression only, where bone

is at its strongest. This can create extremely complex loading

regimes, and clinically it would be rare to experience a single

form of loading as anatomical loading is multidirectional. It is

therefore critical to understand the type and magnitude of forces

that an implant will be expected to withstand when implanted

into the body. For these reasons, simple axial load models or

tests are seldom appropriate. The important contributors to the

mechanical performance of an orthopaedic implant are therefore

the stiffness of the material used, its shape and the type of load

applied.

Under bending forces, as shown in the equations above,

stiffness is calculated as the product E I,1 where E is the elastic

modulus of the material, a material constant, and I is the moment

of inertia of area, a variable that is determined from the shape of

the object. The elastic modulus varies from 1 to 10 GPa in

polymers and bone, to 100e200 GPa in alloys and steel; hence

metallic engineering materials used in implants or trauma de-

vices are one to two orders of magnitude stiffer than bone.

Additionally, the Elastic modulus of medical Titanium alloys

(E w 110 GPa) is half that of Stainless Steel or Cobalt Chromium

(E w 200 GPa). Implant materials should therefore be selected

with their mechanical properties in mind, based upon the forces

they will be expected to encounter, alongside their geometry as

described below. It will become clear that a Titanium plate, for

example, could be produced with similar mechanical properties

to a stainless steel plate by simply altering its thickness.

For purely axial loads (Figure 1), the shape of the object in

cross-section is not important, as deformation is a function of the

cross-sectional area alone. However, for loads applied in bending

or torsion, shape is much more important and there is much

greater scope to alter mechanical performance by changing ge-

ometry than by selecting different materials. The moment of

inertia of area (I) describes the distribution of material in cross-

section around a theoretical neutral axis (Figure 2). Bending of

an object occurs about this axis; thus, when stress is applied to

objects with a solid symmetrical cross-section, bending occurs

about the centre line with tension occurring on the side that is

stretched and compression on the other side that becomes

shorter. The neutral axis describes the point in the structure that

is effectively subjected to zero net force, thus, material on the

bending axis has very little stress applied to it. The presence of a

neutral axis means that hollow materials can be more effective at
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supporting loads than solids, as the material can be concentrated

where it is needed. The further the material within the object is

located away from the neutral axis generally the greater the

stiffness. This is evident in building construction in steel beams

with an “I” cross section that have top and bottom plates sepa-

rated by a thin vertical rib; these beams push material away from

the neutral axis to increase the moment of inertia of area. If the

direction of bending is known, like in a civil engineering sup-

porting beam, the material within the beam can be specifically

positioned; however, in the case of a long bone where forces can

act in many planes, often at the same time, the most effective

cross section becomes a circular annulus.

Different mathematical formulae describe ‘I’ for objects with

different cross-sectional shapes under different types and di-

rections of loading. This is important because, as described

above, the material further away from the neutral axis in the

plane of deformation will have more effect on rigidity. The

equivalent property under torsional loading is known as the

polar moment of inertia of area (J). Examples for common cross-

sections encountered in orthopaedic implants are shown in

Figure 3. For objects with complex cross-sectional shapes, the

overall moment of inertia of area can be calculated by adding or

subtracting the moment of inertia of the simple shapes for the

material that is or is not present respectively. A good example is

that is of a hollow tube where I or J of the overall cross-section is

equal to that of the outer diameter circle minus the inner circle’s

diameter (Figure 3). If the bending axes are not coincident in the

shapes, it is necessary to use the parallel axis theorem; this is

beyond the scope of this paper.1

The body takes great advantage of material distribution in

long bones such as the femur by creating an annular hollow

structure under the control of Wolff’s law.2 The value of I

(bending) and J (torsion) are a function of the radius to the

power of four, hence for any given cross-sectional area I and J are

greatest if the internal material is removed and placed more

peripherally (further from the neutral axis). For the case of a

solid shaft with the same cross-sectional area as the example in

Figure 1 (Dsolid ¼ 19.9 mm) the magnitude of I or J would

decrease by a factor of five (Ianular/Isolid ¼ 5). Thus, when using

the same amount of material, a hollow tube will be more rigid

under bending or torsion than a solid rod as the material is

placed away from the neutral axis where it has more effect. A

long bone is therefore adapted to its function as a tube will be

lighter than a solid bone with the same diameter. Similarly

increasing the diameter of a rod by a small amount greatly in-

creases its bending rigidity. For example, a 9 mm intramedullary

nail would be approximately 50% more rigid than an 8 mm nail.

This effect is seen in ageing osteoporotic bones, where the

amount of osseous material available is decreased. Again, under

the effect of Wollf’s law, the medullary canal of the bone expands

leaving the outer diameter large, creating the most rigid, strong

structure possible with the given material.

Typical values of bending rigidity for common structural

shapes are shown in Table 1; note the cross-sectional area

(proportional to the mass, assuming length is maintained) is

constant for all of the objects shown and only the shape has been

Figure 1 Comparison of Axial, Torsion and Bending for an annular cross section. where, I ¼ pðD4
o�D4

i Þ
64 ¼ 4269 mm4, J ¼ pðD4

o�D4
i Þ

32 ¼ 8537 mm4;
representing the moment of inertia of area and polar moment of inertia respectively. Assuming: L ¼ 0.5 m, Di ¼ 30 mm, Do ¼ 36 mm (Cross
sectional area “A” ¼ 311 mm2), E ¼ 10 GPa, G ¼ 1 GPa, F ¼ 1000 N, T ¼ 10 Nm.

Figure 2 Example of the neutral axis under bending load. Note that
material further from the neutral axis is subjected to increasing tension
on the convex side and increasing compression on the concave side.
The material along the neutral axis is subjected to zero net force along
the axis.
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