
Accepted Manuscript

Full length article

Autophagic response to cellular exposure to titanium dioxide nanoparticles

Lauren Popp, Vinh Tran, Risha Patel, Laura Segatori

PII:	S1742-7061(18)30488-4
DOI:	https://doi.org/10.1016/j.actbio.2018.08.021
Reference:	ACTBIO 5625
To appear in:	Acta Biomaterialia
Received Date:	21 March 2018
Revised Date:	30 July 2018
Accepted Date:	17 August 2018

Please cite this article as: Popp, L., Tran, V., Patel, R., Segatori, L., Autophagic response to cellular exposure to titanium dioxide nanoparticles, *Acta Biomaterialia* (2018), doi: https://doi.org/10.1016/j.actbio.2018.08.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Manuscript

Autophagic response to cellular exposure to titanium dioxide nanoparticles

Lauren Popp, Vinh Tran, Risha Patel, and Laura Segatori^{*}

L. Popp, V. Tran, R. Patel, and Dr. L. Segatori* Rice University, Department of Chemical and Biomolecular Engineering 6100 Main St, MS-362 Houston, Texas 77005 USA *Corresponding author: 713-348-3536, segatori@rice.edu

Titanium dioxide is "generally regarded as safe" and titanium dioxide nanoparticles (TiO₂ NPs) are used in a wide variety of consumer products. Cellular exposure to TiO₂ NPs results in complex effects on cell physiology including induction of oxidative stress and impairment of lysosomal function, raising concerns about the impact of TiO₂ NPs on biological systems. We investigated the effects of TiO₂ NPs (15, 50, and 100 nm in diameter) on the lysosome-autophagy system, the main cellular catabolic pathway that mediates degradation of nanomaterials. Specifically, we monitored a comprehensive set of markers of the lysosome-autophagy system upon cell exposure to TiO₂ NPs, ranging from transcriptional activation of genes required for the formation of autophagic vesicles to clearance of autophagic substrates. This study reveals that uptake of TiO₂ NPs induces a response of the lysosome-autophagy system mediated by the transcription factor EB and consequent upregulation of the autophagic flux. Prolonged exposure to TiO₂ NPs, however, was found to induce lysosomal dysfunction and

Download English Version:

https://daneshyari.com/en/article/10224754

Download Persian Version:

https://daneshyari.com/article/10224754

Daneshyari.com