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a b s t r a c t 

Widespread usage of complex interconnected social networks such as Facebook, Twitter and 

LinkedIn in modern internet era has also unfortunately opened the door for privacy viola- 

tion of users of such networks by malicious entities. In this article we investigate, both 

theoretically and empirically, privacy violation measures of large networks under active 

attacks that was recently introduced in Trujillo-Rasua and Yero (2016). Our theoretical re- 

sult indicates that the network manager responsible for prevention of privacy violation 

must be very careful in designing the network if its topology does not contain a cycle . Our 

empirical results shed light on privacy violation properties of eight real social networks as 

well as a large number of synthetic networks generated by both the classical Erdös–Rényi 

model and the scale-free random networks generated by the Barábasi–Albert preferential- 

attachment model. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Due to a significant growth of applications of graph-theoretic methods to the field of social sciences in recent days, it is 

by now a standard practice to use the concepts and terminologies of network science to those social networks that focus 

on interconnections between people. However, social networks in general may represent much more than just networks of 

interconnections between people. Rapid evolution of popular social networks such as Facebook, Twitter and LinkedIn have 

rendered modern society heavily dependent on such virtual platforms for their day-to-day operation. The powers and im- 

plications of social network analysis are indeed indisputable ; for example, such analysis may uncover previously unknown 

knowledge on community-based involvements, media usages and individual engagements. However, all these benefits are 

not necessarily cost-free since a malicious individual could compromise privacy of users of these social networks for harm- 

ful purposes that may result in the disclosure of sensitive data (attributes) that may be linked to its users, such as node 

degrees, inter-node distances or network connectivity. A natural way to avoid this consists of an “anonymization process” of 

the relevant social network in question. However, since such anonymization processes may not always succeed, an impor- 

tant research goal is to be able to quantify and measure how much privacy a given social network can achieve. Towards this 

goal, the recent work in [42] aimed at evaluating the resistance of a social network against active privacy-violating attacks 
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Table 1 

List of real social networks studied in this paper. 

Name # of Description 

nodes edges 

(A) Zachary Karate Club [47] 34 78 Network of friendships between 34 members of a karate club at a 

US university in the 1970s 

(B) San Juan Community [31] 75 144 Network for visiting relations between families living in farms in 

the neighborhood San Juan Sur, Costa Rica, 1948 

(C) Jazz Musician Network [22] 198 2842 A social network of Jazz musicians 

(D) University Rovira i Virgili 

emails [23] 

1133 

10903 

The network of e-mail interchanges between members of the 

University Rovira i Virgili 

(E) Enron Email Data set [15] 1088 1767 Enron email network 

(F) Email Eu core [36] 986 

24989 

Emails from a large European research institution 

(G) UC Irvine College Message 

platform [37] 

1896 

59835 

Messages on a Facebook-like platform at UC-Irvine 

(H) Hamsterster friendships [24] 1788 12476 This Network contains friendships between users of the website 

hamsterster.com 

by introducing and studying theoretically a new and meaningful privacy measure for social networks. This privacy measure 

arises from the concept of the so-called k -metric antidimension of graphs that we explain next. 

Given a connected simple graph G = (V, E) , and an ordered sequence of nodes S = ( v 1 , . . . , v t ) , the metric representation 

of a node u that is not in S with respect to S is the vector (of t components) d u, −S = ( dist u, v 1 , . . . , dist u, v t ) , where dist u, v 

represents the length of a shortest path between nodes u and v . The set S is then a k - antiresolving set if k is the largest 

positive integer such that for every node v not in S there also exist at least other k − 1 different nodes v j 1 , . . . , v j k −1 
not 

in S such that v , v j 1 , . . . , v j k −1 
have the same metric representation with respect to S ( i.e. , d v , −S = d v j 1 , −S = · · · = d v j k −1 

, −S ). 

The k - metric antidimension of G is defined to be value of the minimum cardinality among all the k -antiresolving sets of G 

[42] . If a set of attacker nodes S represents a k -antiresolving set in a graph G , then an adversary controlling the nodes in S 

cannot uniquely re-identify other nodes in the network ( based on the metric representation ) with probability higher than 1/ k . 

However, given that S is unknown, any privacy measure for a social network should quantify over all possible subsets S of 

nodes. In this sense, a social network G meets ( k , � ) -anonymity with respect to active attacks to its privacy if k is the smallest 

positive integer such that the k-metric antidimension of G is no more than � . In this definition of ( k , � ) -anonymity the parameter k 

is used for a privacy threshold, while the parameter � represents an upper bound on the expected number of attacker nodes in the 

network. Since attacker nodes are in general difficult to inject without being detected, the value � could be estimated based 

on some statistical analysis of other known networks. A simple example that explains the role of k and � to readers is as 

follows. Consider a complete network K n on n nodes in which every node is connected with every other node. It is readily 

seen that for any 0 < � < n , this network meets (n − �, � ) -anonymity. In other words, this means that a social network K n 

guarantees that a user cannot be re-identified (based on the metric representation) with a probability higher than 1 / ( n − � ) 

by an adversary controlling at most � attacker nodes. For other related concepts for metric dimension of graphs, the reader 

may consult references such as [14,25,29] . 

Chatterjee et al. [9] (see also [48] ) formalized and analyzed the computational complexities of several optimization prob- 

lems motivated by the ( k , � )-anonymity of a network as described in [42] . In this article, we consider three of these opti- 

mization problems from [9] , namely Problems 1 –3 as defined in Section 2 . A high-level itemized overview of the contribu- 

tion of this article is as follows (see Section 3 for precise technical statements and details of all contributions): 

� Our theoretical result concerning the anonymity issues for networks without cycles is provided in Theorem 1 in 

Section 3.1 . Some consequences of this theorem are also discussed immediately following a statement of the theorem . 

� In Section 3.2 , we first describe briefly efficient implementations of the high-level algorithms of Chatterjee et al. [9] for 

Problems 1 –3 (namely Algorithms 1 and 2 in Section 3.2.1 ). We then tabulate and discuss the results of applying these 

implemented algorithms for the following type of network data: 

� eight real social networks listed in Table 1 in Section 3.4.2 , 

� the classical undirected Erdös–Rényi random networks G ( n, p ) for four suitable combinations of n and p , and 

� the scale-free random networks G ( n, q ) generated by the Barábasi–Albert preferential-attachment model for four suitable 

combinations of n and q . 

The 6 tables that provide tabulations of the empirical results are Tables 2–7 in Section 3.2 and the type of conclusions 

that one can draw from these tables are stated in the 11 conclusions numbered 1 ©– 11 © in the same section. Despite 

our best efforts, we do not know of any other alternate approaches ( e.g. , sybil attack framework) that will provide a 

significantly simpler theoretical framework to reach all the 11 conclusions as mentioned above. 

As an illustration of a potential application, consider the hub fingerprint query model of Hey et al. [26] . Noting that the 

largest hub fingerprint for a target node u is the metric representation of u with respect to the hub nodes, results on ( k , 

� )-anonymity are directly applicable to this setting of Hey et al. [26] that models an adversary trying to identify the hub 
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