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a b s t r a c t

Quenching solutions to a Kawarada problem with a Caputo time-fractional derivative
and a fractional Laplacian are considered. The solutions to such problems may only exist
locally in timewhen quenching occurs. Quenching and non-quenching solutions are shown
to remain positive and be monotonically increasing in time under minor restrictions.
Conditions for quenching to occur are demonstrated and shown to depend on the domain
size.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to investigate the quenching phenomenon of a time–space fractional semilinear equation.
Let Ω be an open bounded domain in Rd with smooth boundary ∂Ω. We then define QT := Ω × (0, T ) and the parabolic
boundary ΓT = ∂Ω × (0, T ). Consider the following nonlocal Kawarada problem:⎧⎨⎩

∂α
t u = −(−∆)su + f (u), (x, t) ∈ Qt ,

u = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where ∂α
t denotes the Caputo time-fractional derivative of order α ∈ (0, 1), and (−∆)s is the fractional Laplacian with

s ∈ (0, 1), and the continuous initial data u0 : Ω → R+ is such that 0 ≤ u0 ≪ c. The nonlinear reaction term f : Bρ → R+,

where 0 < ρ < c and Bρ := {u ∈ L∞(Ω) : ∥u∥∞ < ρ}, is a given continuous, convex function satisfying a local Lipschitz
condition on Bρ . That is, for u, v ∈ Bρ there exists a continuous function Lf (·) : R+

→ R+ such that

∥f (u) − f (v)∥Hs(Ω) ≤ Lf (c)∥u − v∥Hs(Ω). (1.2)

The norm ∥ · ∥Hs(Ω) will be defined in the following section. We further assume that f is a monotonically increasing function
on Bρ and

lim
u→c−

f (u) = +∞. (1.3)
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When α = s = 1, (1.1) reduces to the following local semilinear problem⎧⎨⎩
∂tu = −(−∆)su + f (u), (x, t) ∈ Qt ,

u = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω,

(1.4)

which was originally studied by Kawarada [1]. This local problem has been well-studied due to the fact that it models
several idealized physical phenomena, including solid-fuel combustion and microelectromechanical systems (MEMS)
[2–8]. For (1.4), it is known that under certain conditions monotonically increasing solutions to the problem may only exist
locally [6,7,9,10]. Further, it is known that for a given function f , the existence of global solutions to (1.4) depends on the
spatial domain size and shape [7,11,12]. We say that two d−dimensional spatial domains Ω1 and Ω2 have the same shape if
there exists y ∈ Ω1 ∩ Ω2 and a constant λ > 0 such that

Ω2 = {z : z = y + λ(x − y), for x ∈ Ω1}. (1.5)

Thus, for a fixed domain shape, determiningwhether global solutions to (1.4) exists, reduces to studying the following steady-
state problem{

∆u + λ2f (u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.6)

The existence of a unique positive solution to (1.6) depends on the value of λ, and thus, there is a critical domain size that
determines whether the classical Kawarada problems emit a global solution [11]. That is, there is a λ∗ > 0 associated to Ω

such that if 0 < λ < λ∗, then the solution exists globally, and if λ∗ < λ < ∞, then there exists a time T∗ < ∞ such that
the maximal interval of existence for the solution is [0, T∗). In this latter case, the solution is said to quench in finite time. For
the case when λ = λ∗, we say that the solution quenches in infinite time, as T∗ = ∞.

The purpose of this current study is to extend some of the existing results for (1.4) to the nonlocal problem (1.1). We note
that this extension is not simply an interesting mathematical problem, but is motivated by numerous physical applications.
That is, there have been numerous recent works which outline the importance of fractional and nonlocal models in the
accurate modeling of multiphysics problems exhibiting anomalous diffusion [13–16]. In particular, solid-fuel combustion
has been shown to behave in a nonlocal manner, thus necessitating the need for considerations of such mathematical
models [17].

In order to study the problem (1.1), we introduce the following definition of quenching in the nonlocal setting.

Definition 1.1. A solution u of (1.1) is said to quench in finite time if there exists T∗ < ∞ such that

max
{
∥u(x, t)∥∞ : x ∈ Ω

}
→ c− as t → T−

∗
. (1.7)

If (1.7) holds for T∗ = ∞, then u is said to quench in infinite time. T∗ is referred to as the quenching time. The set Ωc ⊆ Ω

containing all quenching points is called the quenching set.

The paper is organized as follows. In the following section we introduce some important mathematical preliminaries,
which are vital to the current study. In Section 3 we consider properties of the operators which generate the solution to
(1.1). In Sections 4 and 5 we determine conditions under which there exist unique continuous solutions to (1.1) that are
both positive and monotonically increasing on the domain of existence. Section 6 is concerned with establishing conditions
under which quenching occurs. Finally, Section 7 provides concluding remarks regarding the current work.

2. Mathematical preliminaries

We now introduce some basic facts and definitions from fractional calculus. In the following, we let I := (0, T ) and Γ (·)
be Euler’s gamma function. Further, for α > 0 we define the following function

gα(t) =

{
tα−1/Γ (α), t > 0,
0, t ≤ 0, (2.1)

with g0(t) ≡ 0.

Definition 2.1. Let v ∈ L1(I) and α ≥ 0. The Riemann–Liouville fractional integral of order α of v is defined as

Jαt v(t) := (gα ∗ v)(t) =

∫ t

0
gα(t − s)u(s) ds, t > 0,

where J0t v(t) = v(t).
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