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a b s t r a c t 

A mathematical analysis highlighting the decomposition structure of the least-cost reservoir filling prob- 

lem under time–invariant conditions is provided. It is shown, without loss of generality, that time in- 

variance and unidimensionality of the state variable (for describing the evolution of the hydrodynamic 

system) are sufficient in order to achieve full (spatial and temporal) decomposition. Using this result, 

the role of specific energy in finding least–cost operational schedules for reservoir filling in a general 

“physically meaningful” hydrodynamic system is discussed. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Operational optimization of hydrodynamic systems has been, 

and continues to be, in the focus of extensive research. The area 

covers a broad range of applications ranging from drinking water 

processing and distribution ( D’Ambrosio, Lodi, Wiese, & Bragalli, 

2015; Ghaddar, Claeys, Mevissen, & Eck, 2017; Ghaddar, Naoum- 

Sawaya, Kishimoto, Taheri, & Eck, 2015; Naoum-Sawaya, Ghaddar, 

Arandia, & Eck, 2015 ) to wastewater treatment ( Hou, Li, Xi, & Cen, 

2015; Wei, He, & Kusiak, 2013 ), irrigation ( Reca, Garca-Manzano, 

& Martnez, 2015 ) and energy production ( Kusakana, 2016; Steffen 

& Weber, 2016 ). The field addresses the operational aspects of hy- 

drodynamic systems where given the system topology, the task is 

to derive an operational policy for the active hydrodynamic com- 

ponents (pumps and valves) so that the related costs are minimal 

subject to operational constraints. 

Among the operational optimization problems related to hydro- 

dynamic systems, the optimal loading of the system’s storage(s) 

has received much attention. This problem, referred to as least–cost 

reservoir filling , has high importance in pumped storage hydro- 

electricity ( Rehman, Al-Hadhrami, & Alam, 2015; Steffen & Weber, 

2016 ) but arises in water supply ( Bene & H ̋os, 2012; Lindstedt & 

Karvinen, 2016; Sarbu, 2016 ) and other applications as well. The 

study ( Ghaddar et al., 2015 ) on least–cost pump scheduling related 

to water supply recognized that the related optimization problem 

exhibits a special decomposition structure which can be exploited 
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by Lagrangian relaxation to provide an approximate solution. The 

optimization problem involved the direct minimization of the 

pumping energy cost subject to system constraints (water network 

behavior, reservoir dynamics etc.). A study presented in Bene and 

H ̋os (2012) approaches a similar but simplified problem, where 

pumping energy cost is minimized during the loading of a water 

reservoir. One of the main contributions of this paper is that the 

energy minimization is addressed by the (re)formulation of the 

objective function of the related mathematical programming prob- 

lem. Namely, the energy cost is not directly minimized, instead 

it is incorporated in the optimization objective utilizing the con- 

cept of specific energy . By definition, specific energy is the energy 

required to convey a unit mass (volume) of fluid. Using this formu- 

lation, the authors observed that the problem can be decomposed 

into smaller subproblems which can be solved individually. 

Although the two outlined approaches are fundamentally dif- 

ferent, both achieve problem decomposition by the manipulation 

of the objective function. In Ghaddar et al. (2015) , the problem de- 

composition relies on solid (mathematical) theory, while the spe- 

cific energy approach is supported only by some simulations. In 

Bene and H ̋os (2012) and Bene (2013) , it is demonstrated through 

an extensive parameter study that the utilization of specific energy 

implies decomposition structure for the least–cost reservoir filling 

problem under the assumption that the energy tariff and the water 

consumption do not vary in time. 

Consequently, Bene and H ̋os (2012) and Bene (2013) intuitively 

suggest that assuming time–invariant consumption and energy tar- 

iff the specific energy approach implies decomposability of the 

least–cost reservoir filling problem. While this result is accepted by 

the community ( Coelho & Andrade-Campos, 2014; Mala-Jetmarova, 
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Fig. 1. Hydrodynamic system of interest. 

Sultanova, & Savic, 2017 ), it seems that a gap has emerged be- 

tween theory and practise. To the best of the authors’ knowledge 

no study has been published which would clarify the relation be- 

tween specific energy cost formulation, time–invariant conditions 

and the decomposition structure of the least–cost reservoir fill- 

ing problem. On the other hand, the numerous attempts to solve 

the optimization problem indicate that much of the research is 

devoted to the problem formulation, approximation and solution 

derivation, while considerably less attention has been paid to the 

analysis of the underlying problem. 

To fill this gap, this paper is devoted to the analysis of the 

least–cost reservoir filling problem class. A rigorous mathematical 

framework is developed in order to understand and reveal the de- 

composition structure of this problem class under time–invariant 

conditions. The main contributions are as follows: It is shown that 

under time–invariant conditions (a) the least–cost reservoir filling 

problem exhibits full (spatial and temporal) decomposition struc- 

ture; (b) direct cost minimization and the minimization of specific 

energy are identical problems, different formulations of the same 

objective; and (c) problem decomposition structure is not a result 

of specific energy formulation, i.e., decomposition can be achieved 

without the manipulation of the objective function. Consequently, 

the results achieved so far in this field are extended, generalized 

and explained in detail thereby providing a deeper insight into the 

underlying problem class. 

The paper is organized as follows: In Section 2 the mathe- 

matical programming problem of reservoir filling is introduced. 

Section 3 details the basic properties of the least–cost reservoir fill- 

ing problem through the principle of optimality. In Section 4 the 

time–invariant problem is introduced and the decomposition 

structure is revealed by the relaxation of the principle of optimal- 

ity, while Section 5 addresses the role of specific energy formu- 

lation in least–cost reservoir filling. Finally, Section 6 provides a 

summary of the results presented in this paper and draws the con- 

clusions. 

Notation 

The following notation is adopted: the symbols R , R 

+ and R ≥0 

denote the set of real numbers, the set of positive reals and the set 

of non-negative reals, respectively. Similarly, Z 

+ denotes the set of 

positive integers and Z 

+ 
N 

: = { 1 , . . . , N} a finite set of positive inte- 

gers less than or equal to N ∈ Z 

+ . Vectors x ∈ R 

n are displayed as 

boldface lower case Latin letters and scalars x ∈ R in normal italic 

typeset. The transpose of a vector x is denoted by x ′ . Given a func- 

tion f : X → Y , the set Y is called the image of X under f , where 

Y : = { y ∈ R 

n | ∃ x ∈ X such that y = f (x ) } . Given a set X , dim R (X ) 

denotes the dimension of X over R . 

2. Problem formulation 

In this section the least–cost reservoir filling problem is formu- 

lated. 

The hydrodynamic system of interest (see Fig., 1 ) consists of 

three main components: (1) pumping stations (feed, booster), (2) 

hydrodynamic grid and (3) a reservoir (storage). Pumping stations 

are comprised by individual pumps providing the required pres- 

sure and flow conditions for the system. The hydrodynamic grid is 

a network of (active and passive) hydrodynamic components such 

as pipes, pumps and valves. The grid can be described by a di- 

rected graph, where edges represent hydrodynamic components 

indicating flow directions and vertices (nodes) are the joints of 

hydrodynamic components ( Burgschweiger, Gnadig, & Steinbach, 

2009 ). The reservoir can accumulate, release and store matter. It is 

considered as a stand–alone unit or may represent the aggregated 

(total) storage capacity of the system. 

Let us assume that the hydrodynamic system of interest has 

n p ∈ Z 

+ individual pumps in total (including feed pumps as well 

as booster pumps) and a given topology (e.g., pumps organized in 

pumping stations are running in parallel, series or a combination 

of both). Similarly, the hydrodynamic grid has n v ∈ Z 

+ installed 

valves and n c ∈ Z 

+ nodes. For each node, a bounded flow 0 ≤
w i (t) ≤ w 

max 
i 

(t) (kg/h) (referred to as outflow ) is assigned defin- 

ing the loss of matter due to (for example) consumption, leakage, 

drain or evaporation. The outflow vector is characterized by the 

individual outflows w (t) : = (w 1 (t) , . . . , w n c (t)) ′ ∈ W at time t ∈ T 
(h), where T : = { τ ∈ R | τ ≥ 0 } . Regarding outflow, the following 

assumption is formulated: 

Assumption 1. The outflow trajectory { w (t) | t ∈ T } is known or 

can be forecasted with high accuracy. 

Focusing on operational aspects, the system of interest has 

n p + n v manipulated inputs in total, including the vector of pump 

speeds/states (ω 1 , . . . , ω n p ) ∈ (�1 , . . . , �n p ) and the vector of valve 

opening degrees (ζ1 , . . . , ζn v ) ∈ (ϒ1 , . . . , ϒn v ) . Depending on the 

element type, the variable domains �i and Y j can be integer 

valued finite (i.e., on-off type pumps and valves) or real valued 

compact sets (i.e., variable speed pumps and continuous valves) 

including zero in their interior. Using these, the vector of manip- 

ulated inputs u (t ) : = (ω 1 (t ) , . . . , ω n p (t ) , ζ1 (t ) , . . . , ζn v (t )) ′ ∈ U is 
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