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A B S T R A C T

This paper is concerned with a new Lyapunov-Krasovskii functional (LKF) approach to the stability for neural
networks with time-varying delays. The LKF has two features: First, it can make full use of the information of the
activation function. Second, it employs the information of the maximal delayed state as well as the instant state
and the delayed state. When estimating the derivative of the LKF we employ a new technique that has two
characteristics: One is that Wirtinger-based integral inequality and an extended reciprocally convex inequality
are jointly employed; the other is that the information of the activation function is used as much as we can. Based
on Lyapunov stability theory, a new stability result is obtained. Finally, three examples are given to illustrate the
stability result is less conservative than some recently reported ones.

1. Introduction

In the past decades, neural network (NN) has been successfully
applied in signal processing, pattern recognition, associative memory,
optimization problem, and other engineering and scientific areas [1,2].
However, during the implementation of artificial NNs, the finite
switching speed of amplifiers and the inherent communication time
between the neurons inevitably introduce time delay, which might
cause oscillation, divergence, and even instability. Therefore, the sta-
bility of the neural networks with a time-varying delay (DNNs) has
attracted a large number of researchers [3], and some stability criteria
have been reported in the literature. The stability criteria developed for
DNNs can be divided into delay-independent ones and delay-dependent
ones. Compared to the former, the delay-dependent stability criteria,
which include the information of time delay, usually have less con-
servative, especially when applied to DNNs with small delay. Thus,
more attentions have been paid to delay-dependent stability analysis
and its main goal is to reduce the conservatism of the derived stability
condition.

For Lyapunov functional approach to delay-dependent stability, the
conservatism of the derived stability condition is related to the choosing
of the LKF and dealing with its derivative. Constructing a generalized
LKF is an effective way to reduce conservatism of the stability results
obtained, and various types of LKF have been reported, such as aug-
mented LKF [4], delay-partitioning based LKF [5–8], multiple integrals-

based LKF [5,9], activation function based LKF [10], and so on. The
technique of dealing with the derivative of the LKF also plays a key role
in the process of deriving less conservative stability criteria and nu-
merous techniques have been developed, such as introducing slack
variables [11–13], utilizing integral inequality [5,6,14], adopting
convex combination technique [15–17], and so on.

Recently stability results for neural networks have been reported in
the literature. In Ref. [18], asymptotic stability criterion was obtained
using a LKF including a triple integral, where the Wirtinger-based in-
equality was employed to estimate the derivative of the LKF. In Ref.
[19], by defining a more general LKF, a delay-dependent stability result
was formulated in linear matrix inequality, while a combined convex
approach to stability for DNN was studied in Ref. [20]. Very recently
stability analysis was conducted in Ref. [21] and a new stability result
was derived, where the tradeoff between conservatism and complexity
was considered. In Ref. [22], a delay partitioning method was employed
to derive a delay-dependent stability result. The free matrix approach to
stability for DNN was studied in Ref. [23]. In Ref. [24], by introducing
slack variables some less conservative conditions were obtained; while
in Ref. [25] stability criteria were derived by employing a generalized
free-weighting-matrix technique. However, all the papers above left
room for LKF to improve, with the LKFs not making enough use of the
activation function or the time delay. On the other hand, there was
some room for those papers to improve in estimating the derivative of
the LKF, since new inequalities have already been reported in recently
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published literature. All in all, in terms of the LKF construction or the
estimating approach for the derivative of the LKF, each of those papers
has its limitations. Hence, there is still room for the stability results in
those papers to improve. This motivates the study of this paper.

In this paper, attention is focused on revisiting the stability analysis
problem for DNNs. Compared with recently published papers, this
paper features:

• A new LKF is constructed with more information of the activation
function and the information of the maximal delayed state, the de-
layed state and the instant state.

• When estimating the derivative of the LKF, Wirtinger-based integral
inequality and an extended reciprocally convex inequality are
jointly adopted, and more information of the activation function is
taken into account.

• A new delay-dependent stability criterion is derived based on
Lyapunov stability theory, and the delay-dependent stability cri-
terion has less conservatism.

Notations: Throughout this paper �n denotes the n-dimensional
Euclidean space, and � ×n m is the set of all n×m real matrices; the
superscript ‘T’ and ‘-1’ stand for the transpose and inverse of a matrix,
respectively; ‘I’ and ‘0’ represent the identity and null matrices with
appropriate dimensions, respectively; the notation ∣ ⋅∣ denotes the ab-
solute value; the notation ⋯diag{ } stands for a block-diagonal matrix;
the notation > ≥P 0( 0) means that P is a real symmetric and positive-
definite (semipositive-definite) matrix. Moreover, for any square matrix
A, we define = +Sym A A A{ } T , and the symmetric term in the matrix is
denoted by ∗.

2. Problem formulation

Consider the generalized DNN with a time-varying delay τ t( )
[21,26]:

= − + + − +u t Au t W g Wu t W g Wu t τ ṫ ( ) ( ) ( ( )) ( ( ( ))) ϱ0 1 (1)

where = ⋯u t u t u t u t( ) [ ( ) ( ) ( )]n
T

1 2 is the state vector associated
with the n neurons; ⋅ = ⋅ ⋅ ⋯ ⋅g g g g( ) [ ( ) ( ) ( )]n

T
1 2 represents the

neuron activation function with =g (0) 0; = ⋯ >A a a adiag{ , , , } 0n1 2 ;
W, W0 and W1 are the connection weight matrices; = ⋯ϱ [ϱ ϱ ϱ ]n

T
1 2

is a vector representing the bias; and τ t( ) is a time-varying delay sa-
tisfying

≤ ≤ ≤τ t h τ t μ0 ( ) , ̇ ( ) (2)

The following assumption is made throughout this paper.

Assumption 1. The neuron activation function is bounded, and satisfies
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where −li and +li are known real constants.
Based on Assumption 1, there exists an equilibrium point u∗ for (1),

i.e.

= − + + +∗ ∗ ∗Au W g Wu W g Wu0 ( ) ( ) ϱ0 1

To transfer the equilibrium u∗ to the origin, we make the transformation
= − ∗x t u t u( ) ( ) to neural network (1). Then, it becomes

= − + + −x t Ax t W f Wx t W f Wx t τ ṫ ( ) ( ) ( ( )) ( ( ( )))0 1 (3)

where = ⋯x t x t x t x t( ) [ ( ) ( ) ( )]n
T

1 2 is the state vector of the
transformed system (3), ⋅ = ⋅ ⋅ ⋯ ⋅f f f f( ) [ ( ) ( ) ( )]n

T
1 2 and

= + −∗ ∗f w x t g w x t w u g w u( ( )) ( ( ) ) ( )i i i i i i i with =f (0) 0i and wi de-
noting the ith row vector of the matrix W. It is noted that
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which implies
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This paper aims to derive a delay-dependent stability criterion of
DNN (3) with (2) and (4) to determine the admissible upper bound of
τ t( ), which can guarantee the stability of the DNN. To the end, we need
the following lemmas:

Lemma 1. ([27] Jensen's Inequality). For any matrix �< ∈ ×R0 n n,
scalars α< β, and vector �→x α β: [ , ] n, such that the integration
concerned is well defined, then

∫ ∫ ∫− ≥β α x s Rx s ds x s dsR x s ds( ) ( ) ( ) ( ) ( )
α

β T
α

β T
α

β

Lemma 2. ([28]). For any matrix �< ∈ ×R0 n n, scalars β> α≥ 0 and
vector �→x α β: [ , ] n, such that the integration concerned is well defined,
then

∫
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Lemma 3. ([29] Wirtinger-based integral inequality). For any matrix
�< ∈ ×R0 n n, and any differentiable function �→x α β: [ , ] n, the following

inequality holds:
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Lemma 4. ([30] Extended reciprocally convex inequality). For any
matrix �< ∈ =×R i0 ( 1, 2)i

n n , if there exist symmetric matrices X1,
�∈ ×X n n

2 and any matrices Y1, �∈ ×Y n n
2 such that
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then the following inequality holds for all ∈α [0, 1]
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Remark 1. Let X1= X2= 0, Y1 = Y2 = Y, and then Lemma 4 reduces
to the reciprocally convex inequality lemma [31]. So, the Lemma 4 is
refered to as an extended reciprocally convex inequality.

3. Main result

In this section, we will construct a new LKF to derive a delay-de-
pendent stability result for DNN (3) with (2) and (4). To simplify the
representation, we introduce some notations as follows:
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