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A B S T R A C T

In this paper, we investigated the finite-time consensus tracking problem for multi-agent systems with external
bounded disturbances and input bounded disturbances and unknown velocities. Based on the Lyapunov finite-
time theorem, a novel finite-time consensus control is constructed by using the backstepping method. For un-
known velocities, the high-gain observer is used to estimate the velocity information. It is proved that the
consensus can be achieved in finite time. The consensus shows fast response and strong robustness to various
disturbances. Finally, the effectiveness of the results is illustrated by numerical simulations.

1. Introduction

Recently, the consensus of problem of multi-agent systems has at-
tracted increasing attention due to its applications in multi-vehicles
formation, sensory networks, distributed computation, and so on [1–3].
The consensus means that all agents reach an agreement on a state
under a designed protocol based only on local relative information
between neighboring agents [4]. Currently, the consensus problem can
be roughly categorized into two classes, namely leader-follower con-
sensus (consensus with a leader) [5–7] and leaderless consensus (con-
sensus without leader) [8,9]. There have been many consensus algo-
rithms [5,10–15] developed by synthesizing algebraic graph theory and
control theory. An important topic in the study of the consensus pro-
blem is the convergence rate. Furthermore, the abovementioned lit-
erature mainly focuses on the asymptotical convergence rate. The lit-
erature shows the best asymptotical convergence is exponential with
infinite settling time, i.e., the states cannot reach a consensus in finite
time. In practical applications, it may be more desirable to achieve
consensus tracking in finite time. Therefore, it is very useful to in-
vestigate the finite-time consensus tracking control for multi-agent
systems. Compared with asymptotic consensus, the finite-time con-
sensus provides not only a faster convergence rate but also stronger
robustness to uncertainty and disturbance rejection [16–20].

The finite-time consensus control has been studied in a number of
recently published papers, see for instance [4,9,21–27]. For example,
Hui et al. addressed some necessary and sufficient conditions for finite-
time semi-stability of homogeneous multi-agent systems [21]. Zhao
et al. proposed a robust finite-time stability control for robotic

manipulators by using backstepping method, which is proved by the
finite-time Lyapunov stability theorem [28]. Li Shihua et al. designed a
continuous distributed control algorithms for multi-agent systems de-
scribed by double integrators based on the finite-time control technique
[4]. Khoo et al. proposed a robust finite-time consensus tracking algo-
rithm for multi-robot systems with input disturbances based on the
terminal sliding mode control [22]. Similarly, Zhao et al. constructed a
continuous consensus tracking control using a nonsingular terminal
sliding mode scheme [23]. Liu et al. discussed the finite-time consensus
problem for a class of time-varying nonlinear multi-agent systems, and
proposed a finite-time controller based on the Lyapunov stability the-
orem [26]. He et al. constructed a finite-time consensus protocol by
using the Lyapunov stability theorem [9]. Note that the above-
mentioned algorithms require velocity measurements to be available.

In practice, the velocity is difficult to obtain or cannot be precisely
measured [29], which makes it difficult to achieve consensus in a finite
time using only the relative position information. There are some re-
sults about finite-time consensus algorithms without velocities
[7,29–32]. For example, Zhang et al. proposed a finite time observer-
based controllers for multi-agent systems to achieve finite-time con-
sensus with unavailable velocities [32]. With the existence of dis-
turbances, Zhao and Duan designed a finite-time containment protocol
that uses only relative position measurements [31]. Hua et al. in-
vestigated a finite-time consensus control for second-order multi-agent
systems without velocity measurements [7]. However, methods pre-
sented in those papers cannot consider input disturbances. Motivated
by the abovementioned results, this paper discusses the finite-time
tracking problem of second-order multi-agent systems with external
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bounded disturbances, input bounded disturbances and unknown ve-
locities by using the backstepping method.

The main contributions of this paper are as follows. First, a finite-
time consensus for multi-agent systems is designed based on the finite-
time Lyapunov stability theorem and the backstepping method moti-
vated by paper [28,33]. Second, the external bounded disturbances and
input bounded disturbances are considered in multi-agent systems. Fi-
nally, The high-gain observers are used to obtain velocity information,
and the saturation input is introduced to eliminate the peaking phe-
nomenon and make it more easily use in practice. In contrast to the
previous works related to finite-time consensus, the proposed consensus
control can enhance the robustness of multi-agent systems to various
disturbances.

The rest of the paper is organized as follows. Section 2 gives some
preliminaries on graph theory. The main results are discussed in Section
3. In Section 4, two numerical examples are given to illustrate the
theoretical results. Section 5 gives the conclusions.

2. Preliminaries and model description

2.1. Graph theory notations

For a multi-agent system consisting of one leader and n followers.
Let =G ν κ{ , } be a directed graph, where = ⋯ν n{0,1,2, , }is the set of
nodes, node i represents the ith agent, κis the set of edges, and an edge
in G is denoted by an ordered pair ∈i j i j κ( , )·( , ) if and only if the ith
agent can send information to the jth agent directly, but not necessarily
vice versa. In contrast to a directed graph, the pairs of nodes in an
undirected graph are unordered, where the edge (i, j) denotes that agent
i and j can obtain information from each other. Therefore, an un-
directed graph can be viewed as a special case of a directed graph. A
directed tree is a directed graph, where every node has exactly one
parent except for the root, and the root has a directed path to every
other node. A directed spanning tree of G is a directed tree that contains
all nodes of G.

The matrix = ∈ + × +A a R( )ij
n n( 1) ( 1)where aij>0, if ∈j i κ( , ) and

aij=0 otherwise, is called the weighted adjacency matrix of G with
nonnegative elements. Let = ⋯ ∈ + × +D d d d Rdiag{ , , , }n

n n
0 1

( 1) ( 1)be a di-
agonal matrix, where = ∑ =d ai j

n
ij0 for i=0, 1, …, n. Then, the

Laplacian of the weighted graph can be defined as

= − ∈ + × +L D A R n n( 1) ( 1) (1)

The connection weight between the ith agent and the leader is de-
noted by bi with bi > 0 if there is an edge between the ith agent and the
leader.

2.2. Finite-time stability theory

The Lyapunov finite-time stability theorem is discussed in Refs.
[34,35].

Lemma 1. Consider the non-Lipschitz continuous nonlinear
system =x f x˙ ( )with f(0)= 0. Suppose there are C1 positive definite
function V(x) defined on a neighborhood of the origin and real numbers
c > 0, and 0 < α < 1, such that

(1) V(x)is positive definite;

≤ − = ∂
∂

V x cV x V x V
x

f x˙ ( ) ( ), where ˙ ( ) ( ).α
(2a)

Then, the origin is a finite-time stable equilibrium, and the settling
time, which depends on the initial state =x t x( )0 0, satisfies

≤
−

−
T x V x

c α
( ) ( )

(1 )

α

0

1
0

(2b)

for all x0 in some open neighborhood of the origin.

Lemma 2. [33] Consider the nonlinear system =x f x u˙ ( , ). Suppose
that there exist continuous function V(x), scalars c > 0, 0 < α < 1
and 0 < ε<∞ such that

≤ − +V x cV x ε( ) ( )α (3)

Then, the trajectory of system =x f x u˙ ( , ) is practical finite-time
stable.

2.3. Description of the second order multi-agent systems

In this paper, we consider a multi-agent system with leader and
followers. The leader is active, and its behavior is independent of the
followers. The dynamics of the leader are described as follows:

= ∈
= ∈

x v x R
v u v R
˙ ,
˙ ,

m

m
0 0 0

0 0 0 (4)

where x0 is the position and v0 is the velocity of the leader. The dy-
namics of the ith follower agent are described by

= ∈
= + ∈ = ⋯
x v x R

v u δ v R i n
˙ ,

˙ , , 1, ,
i i i

m

i i i i
m (5)

where = ⋯u i n( 1, , )i represents the control inputs and δi represents the
various disturbance, which is bounded, i.e., ≤∞δ δ , >δ 0.

Definition 1. The multi-agent system is said to achieve second-order
finite-time consensus if for any initial conditions

− = − =
→ →

x t x t v t v tlim ( ) ( ) 0, lim ( ) ( ) 0
t T

i
t T

i0 0

and

= = ∀ ≥ = ⋯x t x t v t v t t T i n( ) ( ), ( ) ( ), , 1,2, , .i i0 0

where T is a positive constant.
The system consists of n+1 agents, where an agent indexed by 0

acts as the leader and the other agents indexed by 1, …, n, are referred
to as the followers. The topological relationships between the leader
and the followers are described by a directed graph =G ν κ{ , }, with
= ⋯ν n{0,1, , }and the adjacent matrix

=
⎡

⎣

⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎤

⎦

⎥
⎥
⎥
∈ + × +A

a a a

a a a
R

0 0 0
n

n n nn

n n10 11 1

0 1

( 1) ( 1)

(6)

Denote =G ν κ{ , }as the subgraph of G, which is formed by the n
followers, where

= ⎡

⎣
⎢

⋯
⋮ ⋮ ⋱ ⋮

⋯

⎤

⎦
⎥ ∈ ×A

a a a

a a a
R

n

n n nn

n n
11 12 1

1 2 (7)

Let = ⋯ ∈ ×D d d d Rdiag{ , , , }n
n n

1 2 be a diagonal matrix with
= ∑ =d ai j

n
ij1 for = ⋯i n1,2, , . Then, it is clear that the Laplacian of the

graph Gcan be defined as

= −L D A (8)

The connection weight between agent i and the leader is denoted by

= ⋯B b b bdiag{ , , , }n1 2 (9)

In this paper, the following assumptions are considered.

Assumption 1. The time-varying control input u0 is unknown to any
follower but its upper bound u0is available to its neighbors.

Assumption 2. The position of the leader x0 and its velocity v0 are
available to its neighbors only.
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