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A B S T R A C T

This paper investigates parameter identification of nonlinear Wiener-Hammerstein systems by using filter gain
and novel cost function. Taking into account the system information is corrupted by noise, the filter gain is
exploited to extract the system data. By using several auxiliary filtered variables, an extended estimation error
vector is developed. Then, based on the discount term of the extended estimation error and the penalty term on
the initial estimate, a novel cost function is developed to obtain the optimal parameter adaptive law. Compared
with the conventional cost function which is composed of the square sum of output error, the proposed algorithm
based on the cost function of this paper can provide faster convergence rate and higher estimation accuracy.
Furthermore, the convergence analysis of the proposed scheme indicates that the parameter estimation error can
converge to zero. The effectiveness and practicality of the proposed scheme are validated through the simulation
example and experiment on the turntable servo system.

1. Introduction

In the industrial processes, the dynamics of most natural systems are
nonlinear and can be sufficiently captured and approximated by non-
linear models. Among the plentiful nonlinear models, block-oriented
models are one of most widely used nonlinear models due to its simple
structure and the outstanding performance of describing the nonlinear
behavior of practical systems [1,2]. The most popular systems of block-
oriented models are Hammerstein systems and Wiener systems [3,4].
To describe the complex nonlinear systems, the above-mentioned sys-
tems can be extended to the Hammerstein-Wiener systems and Wiener-
Hammerstein systems. Various identification approaches for first three
systems gradually reaching maturity [5–8]. And the identification of
the Wiener-Hammerstein systems attracts more attention in recent
years [9,10] owing to the fact that which is popularly used for non-
linear systems modeling [11–13]. The focus of this paper is on the
identification of Wiener-Hammerstein systems, as shown in Fig. 1,
where L1(⋅) and L2(⋅) denote linear dynamic subsystems, respectively.
The intermediate submodel f(⋅) is a nonlinear model.

The filtering technique is applied to extract the useful system in-
formation from noisy measurement data and to identify the system
parameters based on the filtered system information [14–17]. In recent
years, some filtering techniques for system identification have been

published such as linear filter [16], robust H∞ filter [18], Kalman-type
filter [19], adaptive filter [20], etc. Yu et al. [19] applied the Taylor
expansion to approximate the nonlinear submodel of the Hammerstein-
Wiener systems, and proposed a recursive identification algorithm to
identify the parameters of the considered systems based on modified
extended Kalman filter approach. Bershad et al. [20] presented a least
mean square adaptive filter algorithm to partially estimate the con-
volution of input and output linear filters for the Wiener-Hammerstein
system with the Hermite polynomial, and then used the higher order
terms of Hermite expansion to approximate the each of the linear fil-
ters. Finally, stochastic gradient recursion algorithm is proposed to
identify all the unknown coefficients of the Hermite polynomial.
However, the mentioned filter algorithms can work based on some
assumptions, such as a priori knowledge is available [21,22], modeling
uncertainties have a wide range of fields [23] and the filter is strictly
positive real [24]. In order to relax the assumptions, the filter algorithm
in Ref. [25] can be used as a good solution in which the filter parameter
is developed without the assumptions on the system model. Inspired by
the literature [25], the filter gain is presented to extract the system
information of the considered system from noise-corrupted identifica-
tion data in this paper.

As in previous works mentioned, many parameter identification
approaches of Wiener-Hammerstein systems have been presented by
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both academics and engineers [10,26–28]. The major algorithms are
iterative or recursive algorithm based on cost function [29], frequency
estimation method [30], best linear approximation [31], subspace
identification approach [32], kernel-type nonparametric estimation
algorithm [10], etc. Vörös [29] exploited the switching function and
decomposition technique to transform the Wiener-Hammerstein sys-
tems with backlash nonlinearity into a special identification model,
which is identified through the usage of an iterative-type method with
internal variable estimation based on the mean squares criterion.
Schoukens et al. [31] proposed two stage identification algorithm to
identify the Wiener-Hammerstein systems with polynomial non-
linearity. In first stage, the initial parameters of linear blocks and static
nonlinearity are obtained by using the best linear approximation and
linear least squares approach. In second stage, a Levenberg-Marquardt
algorithm is presented to get all the final parameters based on the result
of the first stage. Tan et al. [33] used the Wiener-Hammerstein systems
with dead-zone nonlinearity to model the X-Y moving positioning stage
by using several switch functions and key-term separation principle,
and proposed a modified recursive general identification algorithm to
estimate the parameters of the considered system.

Although the fact that the reported publications can produce effi-
cient estimation or approximation accuracy by minimizing the corre-
sponding cost function [10,29,34], cost function only includes the
output error information while estimation error information and the
initial estimate information are not considered [35,36]. In this paper,
Based on the mentioned publications, a novel cost function is derived
by using the extended estimation error information and initial estimate
information. The contributions of this paper are summarized as follows:

(1) To reduce the effect of noise, the filter gain is applied to filter the
system data, which can enhance the signal-to-noise ratio (the
square root of the ratio of output and noise variance) and improve
the performance of the identification algorithm. Compared with the
mentioned filter algorithms, only one parameter is adjusted, which
simplifies the design of the filter.

(2) The parameter update law is derived by minimizing a novel cost
function. Compared with the conventional cost function, in this
paper, cost function involves the extended estimation error in-
formation which can enhance the estimation accuracy, and the in-
itial estimate information can improve convergence rate.
Furthermore, the convergence analysis of the proposed algorithm
indicates that the parameter estimation error can converge to zero.

The outline of this paper is listed as follows. The identification
problem is stated in Section 2. In Section 3, an adaptive identification
algorithm is developed. Section 4 discusses the convergence of the
proposed algorithm. Subsequently, the simulation example and ex-
periment are provided in Section 5 followed by Section 6 offers some
conclusions.

2. Wiener-Hammerstein systems

As shown in Fig. 1, the Wiener-Hammerstein systems consist of the
first linear subsystem L1, that is acting on the input of the nonlinear
submodel f. And then the output of nonlinear submodel acts on the
input of the second linear subsystem L2. Linear subsystems L1 and L2
can be described by
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where u(t) and y(t) represent the input and output of the system, re-
spectively. The intermediate signals x(t) and v(t) are immeasurable for
user, d(t) describes the system noise. The polynomials with the shift
operator z−1 [z−1u(t)= u(t− 1)]. A(z−1), B(z−1), C(z−1) and D(z−1)
are defined as follows:
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To realize the identification of the concerned systems, the following
common assumptions are adopted [37]. (I) The orders of the poly-
nomials na, nb, nc and nd are known, but the coefficients ai, i=1, 2, …,
na, bj, j=1, 2, …, nb, cp, p=1, 2, …, nc and dq, q=1, 2, …, nd are
unknown. (II) The linear subsystems L1 and L2 are coprime, that is to
say, the linear subsystems are stable. (III) The systems are memoryless
when t≤ 0, i.e., u(t)= 0, v(t)= 0, x(t)= 0 and y(t)= 0 for t≤ 0. (IV)
To obtain a unique identification model, a1 and c1 are set as one.

Based on the nonlinearity types, the nonlinear submodel can be
approximated by using smooth nonlinearity and non-smooth non-
linearity, respectively.

2.1. Smooth nonlinearity

The polynomial approximation is very widely used smooth non-
linearity description [38,39]. Assume the nonlinear submodel f is dif-
ferentiable and described by the Taylor series expansion. The nonlinear
submodel is written as follows
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By choosing a finite order nf, the following polynomial expression
can be obtained
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where fm, m=1, 2, …, nf is constant coefficient.
Applying the key-term separation principle [40] to substitute (1)

and (4) into (2), we obtain
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where the information vector φ(t) and parameter vector θ are written as
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Fig. 1. Structural diagram of Wiener-Hammerstein systems.
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