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A B S T R A C T

In this paper, synchronization of time-varying fractional order chaotic systems, is introduced. Parameters of
system play an important role in chaotic systems. A time-varying parameter is selected for chaotic systems, also
orders of systems are considered as time-varying orders. A reliable controller is designed to synchronize two
different fractional order chaotic systems based on Lyapunov stability theory on fractional order systems.
Numerical simulations and practical implementation of proposed method are presented to verify the results.

1. Introduction

Generalization of the traditional calculus is known as fractional
calculus. Although fractional calculus has 300 years history until recent
decades, it is noticed in many research fields [1]. Many systems are
modeled with fractional-order dynamics [2–4]. For the first time, ex-
istence of chaos in fractional order systems is studied by Grigorenko
and Grigorenko in 2003 [5]. After that many other fractional order
chaotic systems are introduced, such as fractional order Chua's system
[6], fractional order Lorenz system [7], fractional-order financial
system [8], fractional order Duffing system [9] and fractional order Liu
system [10].

One of the most important fractional chaotic systems is the frac-
tional unified chaotic system [11] and fractional order electronic
chaotic oscillator [12]. Unified chaotic system is a chaotic system which
changes between Lorenz, Lü and Chen chaotic systems family with
parameter changes. Synchronization of fractional order chaotic systems
is one of the most important applications of chaotic systems.

Many effective methods have been introduced to achieve the syn-
chronization between identical or different fractional-order chaotic
systems, such as Pecora-Carroll principle [15], adaptive synchroniza-
tion [16], observer-based synchronization [17], backstepping control
[18], linear control [19] and sliding mode control [20]. One of the
fractional order chaotic systems is fractional order electronic chaotic
oscillator which has been introduced in Ref. [12] and chaotic behavior
of this system has been shown for different parameter and order in this
paper. Another well-known fractional order chaotic system is fractional
order unified system which has been introduced in Ref. [11]. According
to the completely different behavior, chaos synchronization between

two different systems, always is a challenging problem. To the best of
authors' knowledge, there are not any specific study on the synchro-
nization problem of different time-varying chaotic systems, yet. There
are some studies on synchronization of fractional order unified system
[13–15], but these methods are used for the same fractional order
unified systems with certain parameter and orders. However these
methods are not usable methods when parameter of system changes in
time domain. Also orders of a chaotic fractional order system, have
important role in behavior of these systems. Then chaos synchroniza-
tion in fractional order systems with time-varying orders makes the
synchronization problem with more complexity. In this paper we in-
troduce new methods for synchronization of time-varying fractional
chaotic system. These variations are on parameter and orders of sys-
tems. We consider two different fractional time-varying systems then
we propose suitable controllers for synchronization of these systems.
First, based on fractional Lyapunov stability theory, controllers are
designed. Then to reduce the control effort and synchronization time,
optimal control conditions for time varying fractional order systems are
considered and fractional time varying controllers are designed, also
practical implementation of the proposed method has been done.

This paper is organized as follows. The basic definitions of fractional
calculus and stability theorem of fractional order systems and some
results of this theorem are introduced in Section 2. In Section 3, we
introduce the time-varying fractional order chaotic systems and prac-
tical implementation of these systems. In section 4 we discuss the
synchronization problem of fractional-order systems. In Section 5, we
use numerical simulations, to show advantages of the proposed method.
Finally, Section 6 concludes this paper.
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2. Fractional calculation

2.1. Fractional operator definitions

There are some definitions for fractional order derivate [21–23].
Three most popular definitions are described in follows.

2.1.1. Grünwald-Letnikov fractional derivative
In Grünwald-Letnikov (GL) definition, fractional derivate of a con-

tinuous function is represented as

∑= − ⎛
⎝

⎞
⎠

−
→

−

=

−

D x t h
α
j x t jh( ) lim ( 1) ( )α

h
α

j

t α h
j

0 0

( )/

(1)

Where α is fractional order and ⎛
⎝

⎞
⎠

= − … − +α
j

α α α j
j

( 1) ( 1)
! .

2.1.2. Riemann-Liouville fractional derivative
Riemann-Liouville (RL) definition of fractional order derivate is

different from (GL) definition. In this definition fractional order deri-
vate is as follows.
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where n is the first integer number bigger than α and Γ is the Gamma
function.

2.1.3. Caputo fractional derivative
Caputo definition of fractional order derivate has some similarity to

RL definition but in the general form it is described as
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Where n and Γ are as mentioned in the RL definition.

2.2. Stability of fractional order systems

Consider the following fractional order equation
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T
1 2 defines the system, also suppose

0 < α≤ 1. In this condition the following relations are introduced.

2.2.1. Stability analysis using integer version of system
Lemma 1. For the system (4) with fractional order α, the Jacobian matrix
at the equilibrium points of system (4) is defined as J= ∂f(x)∕∂x. If all of
the eigenvalues of this matrix satisfy the following condition [24–26]

>eig J απarg( ( )) /2 (5)

This region is shown in Fig. 1. Then, system (4) is locally asymptotically
stable.

For α=1, system (4) changes to integer version which can be
written as

=dx
dt

f x( ) (6)

Remark 1. According to Lemma 1, for integer order system (6), stability
condition is determined as

>eig J πarg( ( )) /2 (7)

2.2.2. Direct stability analysis for fractional time-varying system
Theorem 1. For fractional order system (4) with equilibrium point as
x= 0, if there was a Lyapunov function V (x(t)) which satisfies [31]

≤ ≤α x t V x t α x t( ( ) ) ( ( )) ( ( ) )m
1 2 (8)

and

≤V x t α x ṫ ( ( )) ( ( ) )3 (9)

where α1, α2, α3 and m are positive constants. Then system (4) is Miattag-
Leffler stable stable.

Theorem 2. For fractional order system (4) with equilibrium point as
x= 0, if there was a Lyapunov function V (x(t)) which satisfies [29]

≤ ≤β x t V x t β x t( ( ) ) ( ( )) ( ( ) )1 2 (10)

and
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3 (11)

where β1, β2, β3 are the class-K functions and α ∈ (0,1). Then system (4) is
asymptotically stable.

Lemma 2. For any continuous and derivable function x(t) and α(t) ∈ (0,1),
we have
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Proof 1. With definition (3) for α= 1, n= 1 consider the right side of

Fig. 1. Stability region of system (4) with 0 < α < 1.

Fig. 2. Chaotic attractor of fractional-order ECO system with α=0.95 and
a=0.55.
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