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A B S T R A C T

A method combining space-filling scan paths and adaptive sampling is proposed for surface measurements. Scan
paths including a fractal Hilbert curve and a spiral pattern are mainly investigated. The adaptive sampling is
based on iterative Gaussian process (GP) inference. Sampling positions are intelligently suggested along the scan
path and the final sampled data are trained in a GP-model to reconstruct the entire topography. Simulations and
experiments on different surfaces demonstrated the capability of the proposed method. When the special scan
paths are employed alone, the required data amount is reduced to about 10%–13% of the uniform sampling and
the relative error of surface reconstruction is within 10%. If the GP-aided adaptive sampling is further integrated,
the data amount can be reduced to approximately 3%–4%. In addition, time-consumption in scanning is sig-
nificantly eliminated. Compared with the raster scan, the integration of special scan paths and GP-aided adaptive
sampling has several prominent advantages such as eliminating data amount, preserving surface reconstruction
accuracy, maintaining a single-pass scan and saving time-cost. The measurement method has a potential ap-
plication in situations where the efficiency is of critical importance.

1. Introduction

Measurement of surface topography is frequently involved in nu-
merous science and engineering fields. In massive topography char-
acterization, it is highly demanded that the methods could have the
characteristics of high efficiency, small data amount and high accuracy.
For scanning measurement techniques such as atomic force microscopy
(AFM) and coordinate measuring machine (CMM), the scan rate may be
not so satisfactory. Toward the main purpose of enhancing efficiency
without sacrificing surface reconstruction accuracy, design of scan
trajectory and optimization of sampling strategy have drawn con-
siderable interests.

Two categories of general approaches have been investigated to
improve the efficiency. The first one is the proper design of scan path.
For example, the conventional scan in most scanning probe microscopy
(SPM) instruments is in a raster manner with an equal interval. The
scan rate is typically around 1 Hz, which means that it takes 1 s per scan
line. For a common image with 256× 256 pixels, the required time is
then approximately 4.3 min. The image acquisition is time-consuming
and it hinders the applications in either monitoring dynamic phe-
nomena of a sample or massive topography measurements where much

faster scanning is needed. One of the main factors limiting the scan rate
is that the higher harmonic frequency components of the drive signal
will excite the SPM scanner resonance and distort the measured results
[1]. To overcome this barrier, several special scan patterns have been
proposed. These scan paths including sinusoidal [2], spiral [3], cycloid
[1] and Lissajous [4] patterns have been demonstrated to increase the
allowable rate by one or two orders of magnitudes and they are easily
implementable in practical instruments because no additional mod-
ifications of the hardware components are necessary [5]. In addition,
the data amount may also be reduced as compared with the raster scan.

The other approach is based on undersampling or adaptive sam-
pling. The most convenient way to scan the topography is at an equal
interval. However, such a simple sampling strategy may lead to a large
amount of redundant data, for instance, in the flat regions. To eliminate
the unnecessary points, undersampling or adaptive methods can be
adopted [6]. From determination of the local surface slope or curvature
by interpolation of neighboring points, the sampling interval can be
adjusted according to the topographic variation [7–9]. In case of a pre-
known surface model, the implementation of such an approach is much
easier because the topographic change can be estimated in advance.
AFM measurements based on compressed sensing principles [10,11]
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and random-walker scan patterns [12] have also been proposed. These
methods are aimed to reduce the data amount as much as possible while
keeping satisfactory surface reconstruction accuracy. The determined
sampling locations are usually distributed in an irregular way. Though
the necessary data amount could be significantly reduced, the total scan
distance covering all the sampled positions may be even larger as
compared with the conventional raster scan. Furthermore, additional
probe approaching/retracting at each sampling position may be re-
quired. These factors lead to unwanted time-consumption on moving
the probe or the sample. If the efficiency is of critical importance, ap-
proaches based on compressed sensing and random walker principles
are much more suitable for discrete point-by-point measurements [13].
Based on a reasonable inference of the unknown surfaces, intelligent
sampling methods employing kriging models [14] and Gaussian process
(GP) regressions [15–17] have been developed recently for coordinate
metrology and surface topography characterization. In fact, the kriging
models there were founded on GP models and they were generally si-
milar. The adaptive sampling demonstrated more distinctive perfor-
mances than uniform sampling and other low-discrepancy sampling
patterns [18].

A special scan path can improve the efficiency and adaptive sam-
pling can reduce the data amount. The combination of the two ap-
proaches is assumed to be able to reduce the scan distance and the data
density simultaneously. The measurement efficiency is expected to be
improved and the surface topography reconstruction can keep the same
order of accuracy level as dense uniform sampling. Based on this hy-
pothesis, we integrate special scan patterns and adaptive sampling to-
ward the main purpose of reducing data amount and time-cost for ef-
ficient surface topography measurement without sacrificing the
accuracy. A Hilbert-curve path and a spiral path are employed for the
demonstration purpose. The two paths can be considered as re-
presentatives of the scanning in a Cartesian coordinate system and a
polar coordinate system, respectively. The integrated adaptive sampling
is based on iterative GP-inference of the topography variation along the
scan path and the most effective sampling position is suggested subse-
quently. The final sampled point clouds are used to reconstruct the
entire surface via GP-modeling as well.

2. Methods

2.1. Scan trajectory

As a proof-of-concept, we integrate the GP-aided adaptive sampling
with some special continuous scan patterns. Two types of scan paths,
namely Hilbert curves and spiral patterns, are schematically illustrated
in Fig. 1. The two-dimensional (2D) Hilbert curve is a space-filling
fractal curve that passes each location in the scan area exactly once (see
Fig. 1(a) and (b)). It can be generated recursively in a self-similar
manner [19]. From the diagrams, a Hilbert curve of order n is composed
of four Hilbert curves of order n-1, which are connected by three con-
nector lines. The Hilbert curve enables an image-to-line mapping. For
an arbitrary location having the coordinate (i, j), its previous and next
sampling locations must be among the four coordinates (i-Δx, j), (i+Δx,
j), (i, j-Δy) and (i, j+Δy) indicating that the scan path contains only
horizontal and vertical scan steps. With a higher curve order, the data
density in the same square area increases owing to the decreased in-
tervals Δx and Δy. The orders of the Hilbert curves are respectively 3
and 4 in Fig. 1(a) and (b), for example. The data points in Fig. 1(b) are
much denser than those in Fig. 1(a).

The spiral path starts from the center and it scans in both x and y
directions simultaneously. In a polar coordinate system, the spiral path
can be described as =r vt and =θ ωt with r the instantaneous radial
distance at time t. Parameters v and ω are respectively the radial ve-
locity and the angular velocity. Adjusting the radial interval (Δr) and
the angular interval (Δθ) per unit time step, the data amount within the
scan area can be altered as schematically shown in Fig. 1(c) and (d). In

the followed implementation, the path parameters are determined so
that the data amount is roughly 20%–25% of the uniform sampling
within the same scan area.

2.2. Inference based on Gaussian process

GP-models have been intensively employed to infer unknown data
by assuming that any subset follows a multivariate Gaussian distribu-
tion [20]. GP-inference is used here to guide the adaptive sampling
along the scan path and to reconstruct the entire surface topography.
Let us take the measurement of an arbitrary one-dimensional profile as
an example. Given the current sampling points = …z z x z x{ ( ), , ( )}n1 , the
main objective of GP-inference is to determine a best estimate of the
profile height ∗z at an unsampled position ∗x .

A GP-model is characterized by a mean function and a covariance
function, which can have many forms. The popular selections are that
the mean function is zero everywhere and the covariance ′k x x( , ) is a
squared exponential function [21],

′ = ⎡
⎣⎢

− − ′ ⎤
⎦⎥

k x x σ x x
l

( , ) exp ( )
2f

2
2

2 (1)

where σf
2 and l denote the covariance and the characteristic length,

respectively. The followed covariance matrix can be then established,

=
⎡

⎣

⎢
⎢

⋯
⋮ ⋱ ⋮

⋯

⎤

⎦

⎥
⎥

k x x k x x

k x x k x x
k

( , ) ( , )

( , ) ( , )

n

n n n

1 1 1

1 (2)

= …∗ ∗ ∗k x x k x xk [ ( , ) ( , )]n1 (3)

=∗∗ ∗ ∗k x xk ( , ) (4)

Because the surface data could be described as samples from a
multivariate Gaussian distribution, we have,
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where the superscript T means the matrix transposition. The best esti-
mate of height ∗z is obtained as,

Fig. 1. Schematic illustration of the Hilbert-curve and the spiral scan. (a) (b)
Hilbert curves with different orders. (c) (d) Spiral paths with different radial
intervals.
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