A R T I C L E I N F O

Article history:

Available online xxxx

Keywords:

Simplified symbolic analysis

Analog circuits

Modified nodal analysis
Multi-objective optimization
Genetic algorithm
Simulated annealing

Abstract

In this paper, an evolutionary-based multi-objective criterion is introduced for simplified symbolic small-signal analysis of analog circuits containing MOSFETs. After circuit analysis via modified nodal analysis technique, derived exact symbolic transfer function of the circuit behavior can automatically be simplified. In contrast to traditional simplification criteria, the main objective of our criterion is to control the final simplification error rate. The proposed simplification methodology can be performed by such optimization algorithms as local-search algorithms, heuristic algorithms, swarm intelligence algorithms, etc. In this paper, a hybrid algorithm based on genetic algorithm and simulated annealing is applied to validate the proposed methodology. It is remarkable that all steps including netlist text processing, symbolic analysis, post-processing, simplification, and numerical analysis are consecutively derived in an m-file MATLAB program. The proposed methodology was successfully tested on three analog circuits, and the numerical results were compared with HSPICE.

© 2014 Published by Elsevier Ltd.

1. Introduction

The aim of symbolic analyzers is to derive analytical characterization of the circuit behavior in terms of the circuit parameters, which are represented by symbols. In contrast to the numerical simulators like HSPICE, symbolic analyzers can generate symbolic expressions for the circuit behavior which are more instructive to designers. However, given a certain design point, a symbolic analyzer encounters higher computational complexity than a numerical simulator (Xu, Shi, \& Li, 2011). Symbolic and numerical simulators should be viewed as complementary rather than competing tools. Numerical simulators serve to verify the performance of previously sized circuits, while symbolic tools serve to assist in predicting the behavior of unsized circuits (before sizing). The applications of modern symbolic tools can be basically grouped in two main areas: (1) Those associated with the generation of knowledge about the operation of circuits, e.g., insight into circuit behavior before sizing. (2) Those requiring repetitive evaluations of the formula describing the circuit characteristics, as in automated circuit sizing techniques via iterative optimization algorithms (Fernandez, Vazquez, Huertas, \& Gielen, 1998).

[^0]Experience in symbolic analysis shows that the complexity of symbolic expressions grows exponentially with the circuit size, especially for the circuits described at device-level. For example, there is more than 4.5×10^{17} symbolic terms within the system denominator for the μ A741 op-amp (Toumazou, Moschytz, \& Gilbert, 2004). It is a serious problem in the practical use of these tools due to the difficulties of handling large symbolic formulas. However, experiments on practical circuits show that only a few terms in a symbolic expression contain the majority of relevant information of the circuit behavior (Fernandez et al., 1998). To deal with large analog integrated circuits, either simplification methods (Shokouhifar \& Jalali, 2014) or hierarchical methods (Xu et al., 2011) must be applied. Hierarchical decomposition is to generate symbolic expressions in the "sequence-of-expression" forms. There are three methods for hierarchical analysis, namely topological analysis (Shi, 2013), network formulation (Hassoun \& Lin, 1995), and DDD-based approaches (Tan, Guo, \& Qi, 2005). The main drawback of all hierarchical-based exact symbolic analyses is that the generated sequence of expressions is difficult to interpret and manipulate (Tan, 2006). A number of research papers have addressed the simplified symbolic analysis techniques (Guerra, Roca, Fernandez, \& Vazquez, 2002;Kolka, Biolek, Biolkova, \& Dobes, 2011, 2012; Roo \& Mazo, 2013;Shokouhifar \& Jalali, 2014; Wambacq, Fernandez, Gielen, Sansen, \& Vazquez, 1995;Yu \& Sechen, 1996).
http://dx.doi.org/10.1016/j.eswa.2014.09.030
0957-4174/© 2014 Published by Elsevier Ltd.

$$
\begin{equation*}
H(s, x)=\frac{\sum_{i=0}^{M}\left(s^{i} f_{i}(x)\right)}{\sum_{j=0}^{N}\left(s^{j} g_{j}(x)\right)}=\frac{f_{0}(x)+s f_{1}(x)+s^{2} f_{2}(x)+\ldots+s^{M} f_{M}(x)}{g_{0}(x)+s g_{1}(x)+s^{2} g_{2}(x)+\ldots+s^{N} g_{N}(x)} \tag{1}
\end{equation*}
$$

$h_{k}(x)=h_{k 1}(x)+h_{k 2}(x)+\cdots+h_{k l}(x)=\sum_{t=1}^{l} h_{k t}(x)$
There are four common traditional criteria (Toumazou et al., 2004) for SAG. Partaking of the nominal values of the symbolic parameters, in all these criteria, simplification is performed separately on each polynomial within the numerator and denominator
of the transfer function. The mathematical formulation of these criteria can be summarized in Table 1. In Criterion1, which has been used in SSPICE, the simplification of the polynomial h_{k} is as follows: At first, the term with the largest magnitude is found within the polynomial h_{k}, and is called $h_{k m}$. Then, all terms within h_{k} are compared to $h_{k m}$, one by one. According to Table 1, if the magnitude of term $h_{k t}$ is smaller than $\varepsilon \times h_{k m}$, it will be eliminated from the polynomial, in which ε is the user-specified maximum-allowed error tolerance for the simplification of each polynomial. The main drawback of this criterion is that the accumulated magnitude of the eliminated terms for each polynomial can be either a small or a large value in contrast to the total magnitude of the polynomial. If the polynomial h_{k} has a total of l terms, and in which the p terms among them satisfy Criterion1, the maximum generated error rate in contrast to the exact polynomial is $p \times \varepsilon$ for the worst case. As p grows exponentially with the circuit size, the generated simplification error could be larger than the user-specific value. In order to overcome the mentioned drawback, three other criteria were introduced. In Criterion2, in general, p terms can be eliminated from the polynomial h_{k}, if the absolute value of the accumulated magnitudes of the eliminated terms does not deviate from a given threshold. The denominator of Criterion 3 is identical with the previous one, however, the sum of the magnitudes of the eliminated terms is u in the numerator. Criterion4 shares the numerator of the Criterion 3 , differing from it only in terms of the fact that the accumulate value of the magnitudes of all terms is calculated for its denominator.

As mentioned above, simplification in these traditional criteria was performed separately on each polynomial within the exact symbolic transfer function. Therefore, these criteria do not guarantee the accuracy of the final simplified symbolic transfer function. On the other hand, although the maximum error tolerance for the simplification of each polynomial is limited by ε, the final generated simplification error could not be controlled (e.g., in terms of magnitude, phase, poles, zeros, etc). Although these traditional criteria are well-known and easy to implement, they might lead to generating high error rates in simplified expressions. In order to overcome this disadvantage, we propose a new multi-objective SAG criterion for simplification, which considers some concepts from the overall transfer function to simplify it. In this method, the correlation between the polynomials of the transfer function is also considered to simplify them. The proposed criterion in this study guarantees the accuracy of the simplified symbolic expressions in contrast to the exact ones, with a predictable error rate. Recently, we have proposed an ant colony optimization algorithm for the simplification of symbolic transfer functions of analog circuits, which considers the mean-square error in gain/phase and the absolute error in gain/phase margins between the exact symbolic expressions and the simplified ones, for evaluation of artificial ants (Shokouhifar \& Jalali, 2014). The proposed multiobjective criterion in this paper considers more concepts than in Shokouhifar and Jalali (2014) to simplify the symbolic expressions (e.g., the position of poles/zeros, dc-gain, unity gain-bandwidth frequency, etc).

The simplification problem is a binary selection problem to find an optimal subset from the set of all original symbolic terms. The binary subset selection techniques can be categorized in exhaus-

https://daneshyari.com/en/article/10321899

Download Persian Version:
https://daneshyari.com/article/10321899

Daneshyari.com

[^0]: * Corresponding author. Tel.: +98 9121944288; fax: +98 2122431804.

 E-mail addresses: m_shokouhifar@sbu.ac.ir, shokoohi24@gmail.com
 Q1
 (M. Shokouhifar), a_jalali@sbu.ac.ir (A. Jalali).

