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a b s t r a c t

Lately the topic of multi-objective transportation network optimization has received increased attention
in the research literature. The use of multi-objective transportation network optimization has led to a
more accurate and realistic solution in comparison to scenarios where only a single objective is consid-
ered. The aim of this work is to identify the most promising multi-objective optimization technique for
use in solving real-world transportation network optimization problems. We start by reviewing the state
of the art in multi-objective optimization and identify four generic strategies, which are referred to as
goal synthesis, superposition, incremental solving and exploration. We then implement and test seven
instances of these four strategies. From the literature, the preferred approach lies in the combination
of goals into a single optimization model (a.k.a. goal synthesis). Despite its popularity as a multi-objective
optimization method and in the context of our problem domain, the experimental results achieved by
this method resulted in poor quality solutions when compared to the other strategies. This was particu-
larly noticeable in the case of the superposition method which significantly outperformed goal synthesis.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

When optimizing transportation networks, several criteria can
be used as the optimization goal, criteria such as the shortest dis-
tance traveled minimum inventory, minimum transportation cost
and highest network resilience. In the case of industry based appli-
cations, it is often advantageous to simultaneously consider several
of these goals with a view to developing a model that more accu-
rately represents the operation of the actual business. Defining a
mathematical model that incorporates the perspective of more
than one criterion in itself is not a simple task and often involves
the definition of complex non-linear models. Moreover, the goals
of such criteria may well be mutually exclusive and result in the
definition of a multi-goal model that is not or not always achiev-
able in practice.

A simple way to handle the multi-objective optimization prob-
lem is to construct a composite objective function that is the
weighted sum of the conflicting objectives (Aslam & Ng, 2010). In
the literature this technique is also referred to as the preference-
based strategy and is the approach most often adopted by academic
studies. The preference-based strategy is a trade-off that reduces a

multi-goal approach to a single-goal optimization problem. How-
ever, in reality as a solution this trade-off has proved to be very
sensitive to the relative preferences assigned to the goals (Aslam
& Ng, 2010) and in practice it is difficult for practitioners, even
those familiar with the problem domain to precisely and accu-
rately select such weightings (Konak, Coit, & Smith, 2006).

As part of this work, we identify the principal alternative meth-
ods for use in multi-objective optimization when applied to the
solution of real-world transportation network optimization prob-
lems. The work reported here is an extension to previously work
Veluscek et al. (2014). The problem models and the data sets have
been defined in collaboration with a world leading manufacturer of
construction and mining equipment and represent a snapshot of
the day-to-day complexities and operational challenges faced by
our industrial partners business. The aim of this work is to identify
and test those multi-objective optimization techniques that better
address the complexities of such operating environments.

In the following sections, we identify four generic strategies
used to optimize multi-goal problem scenarios and formally pres-
ent seven implementations of these strategies. The methods have
been designed and implemented with a view to solving the trans-
portation network optimization problem reported in Veluscek
et al. (2014).

In Sections 2 and 3 we present the background to this work and
introduce previously work on multi-goal optimization. In Section 4
we formally describe the methods used to combine single-goal

http://dx.doi.org/10.1016/j.eswa.2014.12.017
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: marco.veluscek@brunel.ac.uk (M. Veluscek), tatiana.kalgano-

va@brunel.ac.uk (T. Kalganova), peter.broomhead@brunel.ac.uk (P. Broomhead),
grichnik_anthony_j@cat.com (A. Grichnik).

Expert Systems with Applications 42 (2015) 3852–3867

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.12.017&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.12.017
mailto:marco.veluscek@brunel.ac.uk
mailto:tatiana.kalganova@brunel.ac.uk
mailto:tatiana.kalganova@brunel.ac.uk
mailto:peter.broomhead@brunel.ac.uk
mailto:grichnik_anthony_j@cat.com
http://dx.doi.org/10.1016/j.eswa.2014.12.017
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


optimization problems. In Section 5 we present the outcome of the
numerical experiments undertaken to verify and test the effective-
ness of the proposed methods.

2. Context and motivations

A robust solution to the multi-goal optimization problem is of
particular interest to real-world applications where several optimi-
zation objectives are commonly involved. Multi-goal problems usu-
ally do not have a single ‘best’ solution, but are characterized by a set
of solutions that are superior to others when considering all objec-
tives (Alaya, Solnon, & Ghedira, 2007). This set is referred to as the
Pareto set or as the non-dominated solution (Alaya et al., 2007). This
multiplicity of solutions can be explained by the fact that individual
objectives are often in conflict (Alaya et al., 2007). For example,
Altiparmak, Gen, Lin, and Paksoy (2006) defined three objectives
for the transportation network optimization problem: the total cost,
the total satisfied customer demand and the equity of the capacity
utilization ratio for each production source. The authors then imple-
ment a genetic algorithm to find the set of Pareto-optimal solutions.
A similar example is presented in Yagmahan and Yenisey (2008) for
the flow shop scheduling problem. The multi-objective function in
this instance consists of minimizing the distance between the val-
ues of all the single-objective functions.

In our experience, most of the solutions proposed for multi-
objective optimization problems are either specific to the kind of
problem or to the kind of technique used to determine the optimal
solution. We have identified four generic solution strategies that in
general are used to solve multi-objective optimization problems.

The first strategy is called Goal Synthesis and requires the def-
inition of a mathematical model which includes all the single-goal
problems. This category is also referred to as the preference-based
strategy (Aslam & Ng, 2010). The model defines one search space
which is a sub-space of the intersection of the single-goal problem
search spaces. The best composite solution is then sought on this
space along one path. The solution found is feasible for each sin-
gle-goal problem separately, but it is not necessarily the optimal
one. Applying this strategy is no different from solving any other
optimization problem: firstly a mathematical model is defined
and then an optimal solution is sought using an appropriate opti-
mization algorithm. However, there is no guarantee that the inter-
section of the single-goal problems exists or that the definition of
such a multi-goal model is even possible.

The second strategy is called Superposition and in contrast to
the previous method does not require the definition of a multi-
objective problem model. Firstly, a solution is computed for each
of the single-goal problems and then a combination of them are
taken as the multi-goal solution. The applicability of this strategy
relies on the definition of a combination operator. Again it is pos-
sible that the combination of the single-goal solutions is empty
and a feasible solution does not exist. Das and Dennis (1998)
designed a method based on this strategy to solve generic non-lin-
ear multi-objective optimization problems.

The third strategy is called Incremental Solving. Here each sin-
gle-goal problem is solved sequentially in accordance with a pre-
defined order, and the starting exploration point of the ith
problem is the solution or stopping point of the ði� 1Þth problem.
The solution for the multi-goal problem depends on the order used
to solve the single-goal problems. Boudahri, Sari, Maliki, and
Bennekrouf (2011) adopted this strategy to optimize an agricul-
tural products supply chain.

The final strategy is called Exploration and is based on a ‘brute
force’ approach. Firstly, a large number of feasible solutions are
generated for each single-goal problem and then the multi-goal
solution is taken as the solution that represents the ‘best’ compro-

mise for the set of single-goal problems. Applying this strategy
should always lead to a solution, provided a feasible solution exists
for at least one of the single-goal problems. In common with many
brute force approaches the cost of producing a quality solution is
computational expensive. Bevilacqua et al. (2012) adopted this
strategy to solve a generic distribution network and employed a
genetic algorithm to improve the generation of solutions.

Aslam and Ng (2010) and Ogunbanwo et al. (2014) provide
extensive reviews of the work undertaken for the problem of trans-
portation network optimization. We have analyzed the works pre-
sented in such reviews and have categorized the reported methods
with respect to those developed to solve multi-objective optimiza-
tion problems. Table 1 and Fig. 1 show the results of that analysis.
We can clearly see that in recent years the Goal Synthesis strategy
is the dominant method used. Nevertheless, despite its popularity
we will show that it may not necessarily be the best choice when
solving real-world transportation network optimization problems.

As will be discussed in the following sections, the method used
in this work to solve our specific real-world optimization problem
is the Ant Colony System algorithm (Dorigo & Gambardella, 1997).
García-Martínez, Cordón, and Herrera (2007) analyzed several ant
colony optimization variants for multi-goal optimization and pre-
sented a taxonomy for them. The authors also performed an empir-
ical analysis for the travel salesman problem and compared their
results with two other well-known multi-objective genetic algo-
rithms. It is worth noting that a prerequisite of such analysis is
to define a multi-goal model to generate the Pareto optimal fron-
tier. Once again, the authors proposed a model that simultaneously
considers all optimization goals (i.e. goal synthesis). This indicates
a preference for the goal synthesis strategy over the use of
alternatives.

3. Transportation network optimization

A transportation network optimization problem may be express
in terms of a minimization objective function, a set of variables and
a set of constraints over these variables, regardless of the goal type
(functions having to be maximized may be multiplied by �1).
Given a vector of variables x 2 Rn and a vector of cost coefficients
c 2 Rn, a transportation network optimization problem may be
defined as:

v ¼min cT xjAx ¼ b ^ x P o
� �

ð1Þ

where A 2 Rm�x is a matrix of coefficients, b 2 Rm is a vector of coef-
ficients and v 2 Rn is a vector of assignments for the variables x
such that the value of the objective function cT x is minimum. The
matrix A and the vector b define the constraints over the decision
variables x and define the problem search space. Therefore, a trans-
portation network optimization problem is defined by the tuple
lp :¼ ðx; c;A; b; vÞ. A multi-goal optimization problem is a set of
tuples representing single-goal optimization problems:

LPðx;A; bÞ ¼ x; c;A; b;vð Þj9c 2 Rjxj ^ 9v 2 Rjxj
� �

; ð2Þ

where the vector of variables x 2 Rn and the set of coefficients A and
b are the same for all the single-goal problems.

In a transportation network optimization problem, the variables
x define the number of products to send on a given network route.
The coefficients c usually depend on the goal and are typically
information associated with a given route on the network (e.g. hav-
ing to optimize for minimum transportation cost, ci 2 c is the cost
to send products via route i). Typically the constraints defined by A
and b are the constraints placed on production capacity and cus-
tomer demand. The solution v is a distribution plan for the
network.
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