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a b s t r a c t

Covering problems are well studied in the Operations Research literature under the assumption that both
the set of users and the set of potential facilities are finite. In this paper, we address the following variant,
which leads to a Mixed Integer Nonlinear Program (MINLP): locations of p facilities are sought along the
edges of a network so that the expected demand covered is maximized, where demand is continuously
distributed along the edges. This MINLP has a combinatorial part (which edges of the network are chosen
to contain facilities) and a continuous global optimization part (once the edges are chosen, which are the
optimal locations within such edges).

A branch-and-bound algorithm is proposed, which exploits the structure of the problem: specialized
data structures are introduced to successfully cope with the combinatorial part, inserted in a geometric
branch-and-bound algorithm.

Computational results are presented, showing the appropriateness of our procedure to solve covering
problems for small (but non-trivial) values of p.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Maximal Covering Location Problem, (MCLP), [3,14,15,22],
is a classic problem in locational analysis with applications in a
good number of fields, such as health care, emergency plan-
ning, ecology, statistical classification, homeland security, see
e.g. [1,8,13,18,39,40] and the references therein. Given a finite set
of users A, each aAA with demand ωaZ0, a set of p facilities in a
set F is sought in order to maximize the demand covered. A point
is said to be covered by a set Fn � F of p facilities if there is at least
one f AFn at distance from a not greater than R, where R40 is a
fixed number, called the covering radius.

(MCLP) is easily expressed as an Integer Program. Indeed,
defining binary variables yf and za to indicate respectively whether
a facility at f is open, and whether a is covered, (MCLP) amounts to

solving the following program:

max
X
aAA

ωaza

s:t: zar
X

f A F: dða;f ÞrR

yf 8aAA

X
f A F

yf ¼ p

yf Af0;1g 8 f AF

zaAf0;1g 8aAA: ð1Þ
(MCLP) is known to be NP-hard, [27], but formulated as (1) is,
in words of [37], integer-friendly, in the sense that its contin-
uous relaxation is often all-integer, and thus no much bran-
ching is usually needed in a branch-and-bound algorithm. See
[23,29,36,38] and the references therein for heuristic approaches
to handle problems of larger size.

Extensions and closely related models to the (MCLP) abound in
the Operations Research literature. First, (MCLP) has been studied
assuming that the space is not a discrete set but a network: the set
A of users is the set of nodes of a network N, and facilities are
allowed to be located not only at the nodes, but anywhere on N. It
is shown, however, that one only needs to consider a finite and
relatively small set of candidate locations, [14,27], and thus the
problem can be written in the form of (MCLP) above. Nontrivial
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extensions include, for instance, replacing the basic yes/no cover-
ing function to more general decreasing functions in the distance
separating the user and the facility, [3,4,2,5]; another variant is
found when the set A of users is finite, but the feasible locations
are assumed to be a subset of the plane, yielding planar covering
models, as reviewed in [33].

Much less literature exists on covering models with regional
demand, [21,26,31], in which, by the very nature of the problem,
assuming the demand to be concentrated at a finite set (e.g. cen-
troids of neighbourhoods, towns, administrative units or census
boundaries, [31]) is a crude approximation. The consequences of
inaccuracies due to such discretization are well studied, [16,28,31],
and thus demand is advocated to be modeled as following a
continuous distribution on a given region. See also [9–11] for other
location models with continuously distributed demand.

The following version of the classic (MCLP) with regional
demand is addressed in this paper: demand is assumed to be
continuously distributed along the edges of a network and p
points along the set of edges of the network are sought in order to
maximize the expected covering of the demand. Hence, the model
differs from the classic (MCLP) in two main issues: first, the set of
feasible locations is not a discrete set, but (a set of) the edges of a
network; moreover, demand is assumed here to be distributed
along the edges of the network, making it a realistic model, for
instance, for covering problems in an urban context, in which
users are located along streets (the edges), or for the location of
emergency services to attend accidents, which take place along
the roads (edges of the transportation network).

Let us now introduce formally the problem under considera-
tion. We are given a network N¼ ðV ; EÞ; each edge eAE has
associated its length le, which allows us to talk about points in an
edge: edge e, with endpoints u; v, is identified with the interval
½0; le�, and we thus identify any xA ½0; le� as the point in the edge e
at distance x of u and distance le�x of v. With this identification,
the shortest-path distance between the nodes in V is readily
extended to a metric d on the points in the edges. Moreover, each
edge e has a weight ωeZ0 and a probability density function (pdf)
f e, which models the demand along edge e. We assume that a
radius R40 is given, and a point x along an edge eAE is covered
by the set of facilities at t1;…; tp if

min
1r irp

dðti; xÞrR: ð2Þ

The expected demand of edge e covered by facilities at t¼ ðt1;…;

tpÞ is given by

ωe

Z le

0
δeðx; tÞf eðxÞ dx;

where δeðx; tÞ takes the value 1 when xAe is covered by facilities at
t¼ ðt1;…; tpÞ, i.e., when (2) is fulfilled, and takes the value
0 otherwise.

With this, the optimization problem at hand can be written as

max
tAEp

CðtÞ : ¼
X
eAE

ωe

Z le

0
δeðx; tÞf eðxÞ dx: ð3Þ

The remainder of this note is structured as follows. In Section 2,
structural properties of the MINLP (3) are studied. A branch-and-
bound method is designed in Section 3. Exploiting the structure of
the problem, data structures and bounding procedures are pro-
posed, and they are tested on a set of instances in Section 4. The
paper ends with some concluding remarks and possible extensions
in Section 5.

2. Structural properties

Property 2.1. For any p-tuple of edges ðe1;…; epÞAEp, the function
C : t¼ ðt1;…; tpÞA ½0; le1 � �…� ½0; lep � ⟶CðtÞ is continuous in
½0; le1 � �…� ½0; lep �.

Proof. Using the inclusion-exclusion principle, we can re-write C
ðtÞ as

CðtÞ ¼
X
eAE

ωe

Z le

0

X
I � f1;…;pg

ð�1Þ1þ j I j ∏
iA I
δeðx; tiÞf eðxÞ dx:

Hence, it suffices to show that, for any e¼ ðu; vÞAE and any
nonempty I, the function

R le
0 ∏iA Iδeðx; tiÞf eðxÞ dx is continuous in

t. Split the index set I in those indices corresponding to facilities in
e and not in e respectively:

Iþ : ¼ fiA I : ei ¼ eg
I� : ¼ fiA I : eiaeg:
Observe that, for iA Iþ , one has

δe x; tið Þ ¼ 1 iff d x; tið ÞrR iff x∈ ti � R; tiþR½ �;
while for iA I� ,

δe x; tið Þ ¼ 1 iff min xþd u; tið Þ; le � xþd v; tið Þ� �
rR iff x∈ 0;R� d u; tið Þ� �

∪ d v; tið Þþ le � R; le
� �

Hence

∏
i∈I þ

δe x; tið Þ ¼ 1 iff x∈ max
i∈I þ

ti � R;min
i∈I þ

tiþR
� �

∏i∈I�δe x; ti½ � ¼ 1 iff x∈ 0;R� max
i∈I�

d u; tið Þ
� �

∪ max
i∈I�

d v; tið Þþ le � R; le

� �
∏
i∈I
δe x; tið Þ ¼ 1 iff

x∈ max max
i∈I þ

ti � R;0
� 	

; min min
i∈I þ

tiþR;R� max
i∈I�

d u; tið Þ
� 	� �

∪ max max
i∈I þ

ti � R;max
i∈I�

d v; tið Þþ le � R
� 	

; min min
i∈I þ

tiþR; le

� 	� �

¼ a1 tð Þ; b1 tð Þ� �
∪ a2 tð Þ; b2 tð Þ� �

:

Hence,Z le

0
∏
iA I
δeðx; tiÞf eðxÞ dx¼

Z
½a1ðtÞ;b1ðtÞ�[ ½a2ðtÞ;b2ðtÞ�

f eðxÞ dx

¼
Z b1ðtÞ

a1ðtÞ
f eðxÞ dxþ

Z b2ðtÞ

a2ðtÞ
f eðxÞ dx�

Z minfb1ðtÞ;b2ðtÞg

maxfa1ðtÞ;a2ðtÞg
f eðxÞdx

¼maxfFeðb1ðtÞÞ�Feða1ðtÞÞ;0gþ maxfFeðb2ðtÞÞ�Feða2ðtÞÞ;0g
� maxfFeðminfb1ðtÞ; b2ðtÞgÞ�Feðmaxfa1ðtÞ; a2ðtÞgÞ;0g;

where Fe is the cumulative distribution function associated with
the pdf f e. Since Fe is continuous, CðtÞ is continuous as well. □

Once the p-tuple of edges ðe1;…; epÞ is chosen, the function C is
continuous on the compact set ½0; le1 � �…� ½0; lep �, and attains its
maximum. Since the possible choices of p-tuple of edges is also
finite, the maximum of C on Ep is attained. Finding such maximum
may be hard because, for arbitrary pdfs fe defining the demand
along the edges, the function Cmay not be convex, and thus Global
Optimization techniques are to be used; in its full generality, C
may lack important structural properties, such as Lipschitz-
continuity. This is shown in the following example.

Example 2.1. Consider a graph N¼ ðV ; EÞ with two nodes, v1; v2,
connected by an edge e of length 2, so that we can identify the
edge with the segment ½�1;1� and the nodes with the endpoints
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