The super connectivity of exchanged crossed cube ${ }^{\pi}$

Wantao Ning
School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi, 710071, PR China

ARTICLE INFO

Article history:

Received 6 January 2015
Received in revised form 6 August 2015
Accepted 8 October 2015
Available online 21 October 2015
Communicated by X . Wu

Keywords:

Exchanged crossed cube
Super connectivity
Super edge-connectivity
Fault-tolerance
Interconnection networks

Abstract

Li et al. proposed a new interconnection network, named exchanged crossed cube ECQ (s, t), which has better properties than other variations of hypercube in the field of the fewer diameter, smaller links and lower cost factor. This work will show that its super connectivity and super edge-connectivity are both equal to $2 s$ with $s \leq t$. It means that at least $2 s$ vertices (resp. $2 s$ edges) of $E C Q(s, t)$ are moved away to obtain a disconnected graph avoiding isolated vertex.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this work, a graph $G=(V, E)$ always means a simple undirected graph, where $V=V(G)$ and $E=E(G)$ are the vertex set and the edge set of G respectively. Let $v \in V$ and $M \subseteq V$. Then $N(v)$ is the neighborhood of v in G and $d(v)=|N(v)|$ is the degree of v in G. Put $N_{M}(v)=N(v) \cap M$. We use $G[M]$ to represent the subgraph of G induced by $M . \delta(G)$ is the minimum degree of G. For the terminology and notation not defined here, we refer to [2].

A (vertex) cut S (resp. edge cut) of G is a vertex (resp. edge) set of G such that $G-S$ is disconnected or trivial. The (vertex) connectivity (resp. edge-connectivity) of G, denoted by $\kappa(G)$ (resp. $\lambda(G)$), is an important concept in network, which is the minimum size over all the (vertex) cuts (resp. edge cuts) of G. As more refined indices, Esfahanian and Hakimi [5] introduced restricted con-

[^0]nectivity (resp. restricted edge-connectivity) by considering cuts (resp. edge cuts) that satisfy some conditions. Based on this concept, super connectivity and super edgeconnectivity were proposed in [1]. A graph G is super connected (resp. super edge-connected) if each minimum order cut (resp. edge cut) isolates a vertex of G. A natural problem is that how many vertices or edges must be deleted to disconnect G such that each component of the remaining graph contains no isolated vertices. This results in the following concept.

Letting $F \subseteq V(G)$ (resp. $F \subseteq E(G)$), F is called a super vertex cut (resp. super edge-cut) of G if $G-F$ is disconnected and every component has at least two vertices. Super vertex cuts or super edge-cuts do not always exist. The super connectivity (resp. super edge-connectivity) of G, denoted by $\kappa^{\prime}(G)$ (resp. $\lambda^{\prime}(G)$), is the minimum cardinality over all super vertex cuts (resp. super edge-cuts) if there is any, and is $+\infty$ otherwise by convention. Many studiers focus their attention on super connectivity and super edgeconnectivity of networks, such as $[4,6,7,10-12,14-19]$.

The hypercube is widely known as one of the most popular interconnection networks for parallel computing systems. Basing on two important interconnection network exchanged hypercube $E H(s, t)$ [9] and crossed cube $C Q_{n}$ [3], Li et al. [8] proposed a new interconnection net-
work exchanged crossed cube $E C Q(s, t)$. Just as $E H(s, t)$ and $C Q_{n}, E C Q(s, t)$ is also a variant of hypercube. This interconnection topology retains most of the topological features of $E H(s, t)$, and meanwhile combines many attractive properties of $C Q_{n}$. It has been proved that $\kappa(E C Q(s, t))=$ $\lambda(E C Q(s, t))=s+1$ with $s \leq t[13]$. Here we show that $\kappa^{\prime}(E C Q(s, t))=\lambda^{\prime}(E C Q(s, t))=2 s$ with $s \leq t$.

2. Exchanged crossed cube

In order to define $E C Q(s, t)$, we show the following necessary auxiliary definition.

Definition 2.1. Two binary strings $x=x_{1} x_{0}$ and $y=y_{1} y_{0}$ are pair related, denoted by $x \sim y$, if and only if $(x, y) \in$ $\{(00,00),(10,10),(01,11),(11,01)\}$.

In [8], Li et al. defined $\operatorname{ECQ}(s, t)$ as follows.
An $E C Q(s, t)$ with positive integers $s \geq 1$ and $t \geq 1$ is defined as an undirected graph. Its vertex set V is

$$
\begin{aligned}
V= & \left\{a_{s-1} \cdots a_{0} b_{t-1} \cdots b_{0} c \mid a_{j}, b_{i}, c \in\{0,1\}\right. \\
& \text { for } j \in[0, s-1], i \in[0, t-1]\} .
\end{aligned}
$$

For a vertex $v=a_{s-1} \cdots a_{0} b_{t-1} \cdots b_{0} c$, the dimension of c, b_{i}, a_{j} are $0, i+1, t+j+1$ respectively. Meanwhile $v[k]$ represents the value of the dimension k in v.
The edge set $E=\left\{\left(v_{1}, v_{2}\right) \mid\left(v_{1}, v_{2}\right) \in V \times V\right\}$ consists of disjoint parts E_{1}, E_{2} and E_{3}.
$E_{1}: v_{1}[0] \neq v_{2}[0], v_{1} \oplus v_{2}=1$, where \oplus is the exclusiveOR operator.
$E_{2}: v_{1}[s+t: t+1]=v_{2}[s+t: t+1], v_{1}[0]=$ $v_{2}[0]=1, v_{1}[t: 1]$ denoted by $b=b_{t-1} \cdots b_{0}$ and $v_{2}[t: 1]$ denoted by $b^{\prime}=b_{t-1}^{\prime} \cdots b_{0}^{\prime}$ are joined according to the following rule: For all $t \geq 1$, if and only if there exists an l ($1 \leq l \leq t$) with (1) $b_{t-1} \cdots b_{l}=b_{t-1}^{\prime} \cdots b_{l}^{\prime}$, (2) $b_{l-1} \neq b_{l-1}^{\prime}$, (3) $b_{l-2}=b_{l-2}^{\prime}$ if l is even, and (4) $b_{2 i+1} b_{2 i} \sim b_{2 i+1}^{\prime} b_{2 i}^{\prime}$ for $0 \leq i<\lfloor(l-1) / 2\rfloor$.
$E_{3}: v_{1}[t: 1]=v_{2}[t: 1], v_{1}[0]=v_{2}[0]=0, v_{1}[s+t: t+1]$ denoted by $a=a_{s-1} \cdots a_{0}$ and $v_{2}[s+t: t+1]$ denoted by $a^{\prime}=a_{s-1}^{\prime} \cdots a_{0}^{\prime}$ are joined according to the following rule: For all $s \geq 1$, if and only if there exists an $l(1 \leq l \leq s)$ with (1) $a_{s-1} \cdots a_{l}=a_{s-1}^{\prime} \cdots a_{l}^{\prime}$, (2) $a_{l-1} \neq a_{l-1}^{\prime}$, (3) $a_{l-2}=a_{l-2}^{\prime}$ if l is even, and (4) $a_{2 i+1} a_{2 i} \sim a_{2 i+1}^{\prime} a_{2 i}^{\prime}$ for $0 \leq i<\lfloor(l-1) / 2\rfloor$.

Here $v[x: y]$ is the bit pattern of v from dimension y to dimension x. It is easy to verify that $E C Q(s, t)$ has 2^{s+t+1} vertices. For simplicity, we sometimes use $E C Q$ instead of $E C Q(s, t)$. Fig. 1 shows $E C Q(1,3)$.

In [8], authors announced some fundamental properties of $E C Q$.

Theorem 2.1. (See [8].) $\operatorname{ECQ}(s, t)$ is isomorphic to $E C Q(t, s)$.

Hence we can always assume $s \leq t$ hereafter. Then $\delta(E C Q(s, t))=s+1$.

Theorem 2.2. (See [8].) ECQ (s, t) can be partitioned into two copies of $E C Q(s-1, t)$ or $E C Q(s, t-1)$.

Fig. 1. $E C Q(1,3)$.
For the connectivity of $E C Q$, there has the following theorem.

Theorem 2.3. (See [13].) $\kappa(E C Q(s, t))=\lambda(E C Q(s, t))=s+1$ with $s \leq t$.

In this work, we will show the following main result on super connectivity.

Theorem 2.4. $\kappa^{\prime}(E C Q(s, t))=2 s$ with $s \leq t$.

3. Proof

Proof of Theorem 2.4. ECQ can be partitioned into subgraphs L and R, where

$$
\begin{aligned}
V(L)= & \left\{0 a_{s-2} \cdots a_{0} b_{t-1} \cdots b_{0} c \mid a_{j}, b_{i}, c \in\{0,1\}\right. \\
& \text { for } j \in[0, s-2], i \in[0, t-1]\}, \\
V(R)= & \left\{1 a_{s-2} \cdots a_{0} b_{t-1} \cdots b_{0} c \mid a_{j}, b_{i}, c \in\{0,1\}\right. \\
& \text { for } j \in[0, s-2], i \in[0, t-1]\} .
\end{aligned}
$$

L and R are the subgraphs induced by $V(L)$ and $V(R)$ respectively. Obviously L and R are both isomorphic to $E C Q(s-1, t)$. Put

$$
\begin{aligned}
A= & \left\{0 a_{s-2} \cdots a_{0} b_{t-1} \cdots b_{0} 1 \mid a_{j}, b_{i} \in\{0,1\}\right. \\
& \text { for } j \in[0, s-2], i \in[0, t-1]\}, \\
B= & \left\{0 a_{s-2} \cdots a_{0} b_{t-1} \cdots b_{0} 0 \mid a_{j}, b_{i} \in\{0,1\}\right. \\
& \text { for } j \in[0, s-2], i \in[0, t-1]\}, \\
C= & \left\{1 a_{s-2} \cdots a_{0} b_{t-1} \cdots b_{0} 0 \mid a_{j}, b_{i} \in\{0,1\}\right. \\
& \text { for } j \in[0, s-2], i \in[0, t-1]\}, \\
D= & \left\{1 a_{s-2} \cdots a_{0} b_{t-1} \cdots b_{0} 1 \mid a_{j}, b_{i} \in\{0,1\}\right. \\
& \text { for } j \in[0, s-2], i \in[0, t-1]\} .
\end{aligned}
$$

By this partition, we can obtain the following properties directly (see Fig. 2).

Download Persian Version:
https://daneshyari.com/article/10331023

Daneshyari.com

[^0]: the The project is supported by the Fundamental Research Fund for the Central Universities (No. K5051370013), the NSF of China (Nos. 11326218, 11401456), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JQ1016) and the China Postdoctoral Science Foundation (No. 2012M521742).

 E-mail address: wtning@xidian.edu.cn.

