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In the strict Majority Bootstrap Percolation process each passive vertex v becomes active if
at least � deg(v)+1

2 � of its neighbors are active (and thereafter never changes its state). We
address the problem of finding graphs for which a small proportion of initial active vertices
is likely to eventually make all vertices active. We study the problem on a ring of n vertices
augmented with a “central” vertex u. Each vertex in the ring, besides being connected to u,
is connected to its r closest neighbors to the left and to the right. We prove that if vertices
are initially active with probability p > 1/4 then, for large values of r, percolation occurs
with probability arbitrarily close to 1 as n → ∞. Also, if p < 1/4, then the probability of
percolation is bounded away from 1.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following deterministic process on a graph
G = (V , E). Initially, every vertex in V can be either ac-
tive or passive. A passive vertex v becomes active iff at
least k of its neighbors are already active; once active,
a vertex never changes its state. This process is known
as k-neighbor bootstrap percolation [4]. If at the end of the
process all vertices are active, then we say that the ini-
tial set of active vertices percolates. We wish to determine
the minimum ratio of initially active vertices needed to
achieve percolation with high probability. More precisely,
suppose that the elements of the initial set of active ver-
tices A ⊆ V are chosen independently with probability p.
The problem is finding the least p for which percolation of
A is likely to occur.

Since its introduction by Chalupa et al. [4], the boot-
strap percolation process has mainly been studied in the
d-dimensional grid [n]d = {1, . . . ,n}d [1]. The precise defi-
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nition of critical probability that has been used is the fol-
lowing:

pc
([n]d,k

)
= inf

{
p ∈ [0,1]: Pp

(
A percolates [n]d)� 1/2

}
.

In [1] it is proved that, for every d � k � 2, pc([n]d,k) =
(

λ(d,k)+o(1)
log(k−1) n )d−k+1, where λ(d,k) < ∞ are equal to the val-

ues of specific definite integrals for every d � k � 2. In the
(simple) Majority Bootstrap Percolation (simple MBP) process
(introduced in [2]) each passive vertex v becomes active iff
at least � deg(v)

2 � of its neighbors are active, where deg(v)

denotes the degree of vertex v in G . Note that for [n]d , the
critical probability for simple MBP percolation corresponds
to pc([n]d,d), which goes to 0 as n → ∞.

Here we introduce the strict Majority Bootstrap Percola-
tion (strict MBP) process: each passive vertex v becomes ac-
tive iff at least � deg(v)+1

2 � of its neighbors are active. Note
that if deg(v) is odd, then strict and simple MBP coincide.
For [n]d the critical probability in strict MBP pc([n]d,d + 1)

goes to 1. This holds because, in this case, any unit hyper-
cube starting with its 2d corners passive will stay passive
forever.

A natural problem is finding graphs for which the criti-
cal probability in the strict MBP is small. Results by Balogh
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and Pittel [3] imply that the critical probability of the
strict MBP for random 7-regular graphs is 0.269. In [6],
two families of graphs for which the critical probability is
also small (but higher than 0.269) are explored. The idea
behind these constructions is the following. Consider a reg-
ular graph of even degree G . Let G ∗ u denote the graph G
augmented with a single universal vertex u. The strict MBP
dynamics on G ∗ u has two phases. In the first phase, as-
suming that vertex u is not initially active, the dynamics
restricted to G corresponds to the strict MBP. If more than
half of the vertices of G become active, then the universal
vertex u also becomes active, and the second phase begins.
In this new phase, the dynamics restricted to G follows the
simple MBP (and full activation becomes much more likely
to occur).

The two augmented graphs studied in [6] were the
wheel WHn = u ∗ Rn and the toroidal grid plus a universal
vertex TWHn = u ∗ R2

n (where Rn is the ring on n vertices
and R2

n is the toroidal grid on n2 vertices). For a family of
graphs G = (Gn)n , the following parameter was defined (as
before, A denotes the initial set of active vertices):

p+
c (G) = inf

{
p ∈ [0,1]:

lim inf
n→∞ Pp(A percolates Gn in strict MBP ) = 1

}
.

Consider the families WH = (WHn)n and T WH =
(TWHn)n . It was proved in [6] that p+

c (WH) = 0.4030 . . . .
For the toroidal case it was shown that 0.35 � p+

c (T WH)

� 0.372. Computing the critical probability for the wheel
is trivial. Nevertheless, if we increase the radius of the ver-
tices, then the situation becomes much more complicated.
More precisely, let Rn(r) be the ring where every vertex
is connected to its r closest vertices to the left and to
its r closest vertices to the right. Here we study the strict
MBP process in a generalization of the wheel that we call
r-wheel WHn(r) = u ∗ Rn(r). Our main result is the follow-
ing:

Theorem 1. The limit of p+
c (WH(r)), as r → ∞, exists and

equals 1/4.

2. Preliminary results

We start by showing that we can reduce our problem to
the issue of whether a single fixed (non-universal) vertex
eventually becomes active.

Lemma 2. Let 0 < p < 1 be the probability for a vertex
to be initially active. Let r be a positive integer. Denote by
pW (n, r, p) the percolation probability of the r-wheel and de-
note by pR(n, r, p) the probability that the strict majority on
Rn(r) ends up with (strictly) more active than passive vertices.
Then,

lim inf
n→∞ pR(n, r, p) � lim inf

n→∞ pW (n, r, p),

lim sup
n→∞

pW (n, r, p) � p + (1 − p) · lim sup
n→∞

pR(n, r, p).

Proof. Note that for ε > 0 we can choose n large enough
so that the probability that at least one block of r consecu-
tive vertices is initially active is larger than 1 − ε , in which
case percolation occurs iff the universal vertex becomes
active during the evolution. We deduce the first inequality
by taking ε arbitrarily small. Note now that the universal
vertex is active when the dynamics stabilizes only if it was
either already active initially (probability p) or if it was ini-
tially passive and the dynamics on the ring Rn(r) produces
more than n/2 active vertices. �

The vertices of the ring Rn will be denoted as 0,1, . . . ,

n − 1, starting at some arbitrary vertex (arithmetic over
vertex indices will always be modulo n). The positive inte-
ger r will be called the radius.

Lemma 2 shows that we can study the ring Rn(r) and
its dynamics to derive results about the r-wheel. Now, con-
sider the 0–1 random variable Xi(n, r) giving the state of
vertex i after stabilization of the dynamics (Xi(n, r) = 0 if
the state is passive, and Xi(n, r) = 1 if it is active). Next, we
show how to bound pR(n, r, p) in terms of Ep(X0(n, r)).

Lemma 3. Let 0 < p < 1, n ∈ N
+ , and r be a fixed radius. Then,

2Ep
(

X0(n, r)
) − 1 � pR(n, r, p) � 2Ep

(
X0(n, r)

)
.

Proof. By definition pR(n, r, p) = Pp(
∑

i Xi(n, r) > n/2). By
Markov’s inequality we then have Pp(

∑
i Xi(n, r) > n/2) �

2
nEp(

∑
i Xi(n, r)). Using linearity of expectation and the

fact that all Xi(n, r) are equally distributed (symmetry of
the ring), we deduce pR(n, r, p) � 2Ep(X0(n, r)). The lower
bound is obtained in the same way considering again
Markov’s inequality but for the (again positive) random
variable n − ∑

i Xi(n, r). More precisely:

pR(n, r, p) = 1 − Pp

(
n −

∑
i

Xi(n, r) > n/2

)

� 1 − 2

n
Ep

(
n −

∑
i

Xi(n, r)

)
. �

3. Lower bound on p+
c (WH(r))

We will assume n > 2r + 1 and that the initial state
of the universal vertex u is passive. Let 0 < p < 1/2 and
q = 1 − p. The starting configuration σ = (σ0, . . . , σn−1),
where vertex j is initially active (respectively passive) if
and only if σ j = 1 (respectively σ j = 0), occurs with prob-

ability p
∑

j σ j qn−∑
j σ j . We write X0 instead of X0(n, r).

Conditioning on σ0,

Pp(X0 = 1) � p + Pp(X0 = 1|σ0 = 0). (1)

We say there is a wall located � > 0 vertices to the left
of vertex 0 if σ−� = 1, σ−�−1 = σ−�−2 = · · · = σ−�−(r+1) =
0. Similarly, we say there is a wall located at � > 0 ver-
tices to the right of vertex 0 if σ� = 1, σ�+1 = σ�+2 = · · · =
σ�+(r+1) = 0. Let L (respectively R) be the smallest posi-
tive � such that there is a wall located � vertices to the
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