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We develop a powerful graph theoretical approach that can compute the number of partial 
words, sequences with wildcard or hole characters, having a set of strong and weak 
periods, the number of partial words having a set of border lengths, the number of partial 
words having a maximum border length, the population size of a border array, the number 
of partial words having any set of required compatibilities and incompatibility sets, any of 
the above restricting to a fixed number of holes, any of the above restricting to a set of hole 
positions, to name a few. In the process, we establish some elegant relationships between 
these numbers, the Bell numbers, and the Stirling numbers of the second kind.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The fundamental concept of a border of a string plays a major role in several research areas including string searching 
algorithms, pattern matching, text compression, and computational biology (see, for instance, [10,19]). A string w = w[0..n)

is said to have a border of length � < n if its prefix of length � is equal to its suffix of same length. We can classify strings 
by their border lengths, but we can also go a step further by examining the border lengths of prefixes. To do so, the border 
array b = b[0..n) of w (also called its “failure function”) is defined such that each b[i] is the length of the longest border 
of w ’s prefix of length i + 1. Problems of efficiently constructing, counting, validating, enumerating, and verifying border 
arrays provide interesting algorithmic and combinatorial challenges [2,11]. For instance, Moore, Smyth, and Miller [16] have 
showed how to count and generate all strings of length n constructed using exactly k letters that give rise to distinct 
patterns and distinct border arrays, for all positive integers n and k, providing algorithms that compute all such strings in 
constant time per string. Their ideas and results, which lead to algorithms that are much more time and space efficient 
than computing or counting �(kn) strings, find applications for generating data sets useful in testing various algorithms on 
strings. Several other concepts related to borders have been introduced such as abelian borders [9,17], parameterized border 
arrays [21,22], border correlations [6,14], to name a few.
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The above-mentioned border related concepts have been studied not only for regular strings (or total words), but also 
for strings with wildcard or hole characters (or partial words) that allow positions of the string to match any letter of the 
alphabet (a subclass of the so-called indeterminate strings). Partial words provide a generalization of strings that has both 
theoretical and practical importance due to the fact that they model data that is not perfect but corrupted. It is useful to 
consider several different methods for classifying partial words. Two partial words are equal if they represent the same 
sequence of characters, and they are compatible if they are equal for all positions where both are non-hole characters. 
Aside from equality and compatibility, we can consider partial words according to their border lengths and border arrays. 
A non-empty partial word is bordered if one of its proper prefixes is compatible with one of its suffixes; it is unbordered
otherwise. Two types of borders have been identified: simple and non-simple (see [1,5,7] for recent works on bordered 
partial words).

The problem of generalizing to partial words the enumeration of strings with distinct border arrays was suggested 
in [1]. Unfortunately, as discussed there, a translation of Moore et al.’s results to partial words is not trivial since some 
canonical strings associated with the border arrays cannot be obtained using their tree construction, and additionally, some 
border arrays cannot be generated at all. In this paper, we describe graph theoretical approaches that yield many interesting 
connections between various values of the population size of a border array, i.e., the number of partial words sharing the 
array, as well as many results that can be used to study properties of partial words. Our compatibility graph represents the 
character compatibilities a partial word must have in order to have a specific border array. We show how p-distinct partial 
words, i.e., they represent distinct patterns, and b-distinct partial words, i.e., they have distinct border arrays, having a fixed 
length n and constructed with exactly k letters, can be counted. We bound the number of holes in partial words with 
specific border lengths and bound the number of b-distinct partial words with various properties. In doing so, we establish 
some elegant relationships between these numbers, the Bell numbers, and the Stirling numbers of the second kind.

The contents of our paper are as follows: In Section 2, we review some basic concepts on partial words, borders, and 
border arrays, and discuss some preliminary results on them including a relationship between border lengths and strong 
and weak periods. In Section 3, we compute the maximum number of holes a non-simply bordered partial word of a fixed 
length over a k-letter alphabet can have, and we show that this number is constant for all k ≥ 2. We also study this number 
when we replace “non-simply bordered” by “unbordered”, obtaining an upper bound by using a result of Turán in extremal 
graph theory. An exact formula for k = 2 is also derived, and we prove that the number is constant for all large enough k. 
In Section 4, we extend the concept of the maximum number of holes a bordered partial word of a fixed length over k
letters can have to specify the longest border length. We also examine when the partial word uses exactly k letters. In 
Section 5, we give a graphical approach to determining population sizes that uses the “connected component array” and 
that is motivated by the study of correlation population sizes of Guibas and Odlyzko, among others [8,13,18]. We also 
describe another approach that uses the “subgraph component polynomial” of Tittmann et al. [20] for the enumeration of 
vertex induced subgraphs with respect to the number of connected components. In Section 6, we study the hole set of a 
border array, i.e., the set of all possible sets of hole positions of a partial word with that border array. We give in particular 
a characterization of the hole set of all border arrays over the binary alphabet. In Section 7, we give a recursive formula, 
then a closed form formula, for counting weakly one-periodic partial words. The problem is equivalent to computing the 
subgraph component polynomial for a path graph. We also examine partial words with weak periods one through some 
given threshold. In Section 8, we count border arrays. Finally in Section 9, we conclude with some suggestions for future 
work.

2. Preliminaries on borders and border arrays

We first give an overview of basic concepts of combinatorics on partial words. We denote by N the set of non-negative 
integers {0, 1, . . .}. For integers i and j such that 0 ≤ i ≤ j, the set {i, . . . , j} is abbreviated by [i.. j] or by [i.. j + 1).

Let A be a non-empty finite set called an alphabet. Each element a ∈ A is a letter. A total word over A is a finite sequence 
of letters from A. A partial word over A is a finite sequence of characters from A� = A ∪ {�}, the alphabet A being extended 
with the “hole” character � (a total word is a partial word that does not contain the � character). We denote by w[i] the 
character at position i of the partial word w .

The length of a partial word w is denoted by |w| and represents the number of characters in w . The empty word is the 
sequence of length zero and is denoted by ε. For a partial word w , the powers of w are defined recursively by w0 = ε and 
for i ≥ 1, wi = w wi−1. The set of all words over the alphabet A is denoted by A∗ , while the set of all partial words over A
is denoted by A∗� .

If w1 and w2 are two partial words over A of equal length, then w1 is contained in w2, denoted by w1 ⊂ w2, if 
w1[i] = w2[i] whenever w1[i] ∈ A. Partial words w1 and w2 are compatible if there exists a partial word w such that 
w1 ⊂ w and w2 ⊂ w . This is denoted by w1 ↑ w2. Given partial words w1 and w2 such that w1 ↑ w2, the least upper bound
of w1 and w2 is the partial word w1 ∨ w2, where w1 ⊂ (w1 ∨ w2) and w2 ⊂ (w1 ∨ w2), and if w1 ⊂ w and w2 ⊂ w then 
(w1 ∨ w2) ⊂ w .

A partial word u is a factor of a partial word w if there exist x, y such that w = xuy. The factor u is proper if u �= ε and 
u �= w . We say that u is a prefix of w if x = ε and a suffix of w if y = ε. For integers i and j such that 0 ≤ i ≤ j < |w|, the 
notation w[i.. j], or w[i.. j + 1), abbreviates the factor w[i] · · · w[ j] of w .
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