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a b s t r a c t

We propose an automated framework for predicting gestational age (GA) and neurodevelopmental mat-
uration of a fetus based on 3D ultrasound (US) brain image appearance. Our method capitalizes on age-
related sonographic image patterns in conjunction with clinical measurements to develop, for the first
time, a predictive age model which improves on the GA-prediction potential of US images. The frame-
work benefits from a manifold surface representation of the fetal head which delineates the inner skull
boundary and serves as a common coordinate system based on cranial position. This allows for fast and
efficient sampling of anatomically-corresponding brain regions to achieve like-for-like structural com-
parison of different developmental stages. We develop bespoke features which capture neurosonographic
patterns in 3D images, and using a regression forest classifier, we characterize structural brain develop-
ment both spatially and temporally to capture the natural variation existing in a healthy population
ðN ¼ 447Þ over an age range of active brain maturation (18–34 weeks).

On a routine clinical dataset ðN ¼ 187Þ our age prediction results strongly correlate with true GA
ðr ¼ 0:98; accurate within� 6:10 daysÞ, confirming the link between maturational progression and neur-
osonographic activity observable across gestation. Our model also outperforms current clinical methods
by ±4.57 days in the third trimester—a period complicated by biological variations in the fetal population.
Through feature selection, the model successfully identified the most age-discriminating anatomies over
this age range as being the Sylvian fissure, cingulate, and callosal sulci.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Accurate gestational age (GA) estimation forms an integral part
of obstetric prenatal care. It defines the estimated date of delivery
(EDD), and can influence the success or safety of a clinical interven-
tion. Moreover, it is essential for the screening of fetal abnormali-
ties. The anomaly scan, which is routinely offered in the early
second trimester, forms the legal basis for time-critical care
decisions as it enables expectant parents to make informed
reproductive decisions about their unborn child (e.g. termination
of pregnancy, intrauterine therapy or intervention) (National
Collaborating Centre for Women’s and Children’s Health, 2008).

Traditional approaches to GA estimation include (a) menstrual
dating, which makes use of the first day of the last menstrual
period (LMP) as a reference point for the EDD and (b) extraction
of diameter and circumference measurements from 2D ultrasound

(US) images of the fetal cranium, abdomen, and femur (ISUOG,
2007). These measurements are regressed to population-based
dating charts to estimate age and assess normality of fetal growth
(Loughna et al., 2009). However, beyond 24 post-menstrual weeks,
measurement accuracy is dependent on operator expertise and
compromised by increasing biological variation, inconsistencies
in skull size approximation, and subjectivity in 2D diagnostic plane
finding, all contributing to age approximation errors (Bottomley
and Bourne, 2009). As pregnancy advances and biological variation
amongst normal fetuses increases, the range of values of each bio-
metric measurement associated with a specific GA also increases
and so equations based upon size become less accurate. In practice,
this means that whilst the predictive error at 22 weeks’ GA
(±10 days, Altman and Chitty (1997)) is considered acceptable in
the majority of clinical settings, the predictive error at
28–42 weeks (±18 days) is considered to offer little clinical value
(Hadlock et al., 1983).

Pregnancy dating becomes particularly important in
low-income settings where pregnant women typically attend for
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obstetric care late in pregnancy, when menstrual history is
unavailable or unreliable. In the absence of clinically-useful LMP
information, US measurements provide the most accurate estima-
tion of GA (Geirsson, 1991). However, in the third trimester of
pregnancy, even US-based dating may produce estimation errors
up to ±3 weeks (Hadlock et al., 1984; Altman and Chitty, 1997).
Thus, in a setting where screening occurs in the second and third
trimesters, the error margins yielded by current methods render
them as not clinically useful, potentiating the need for alternative
techniques for estimating GA.

Post-mortem neuroanatomical studies have observed that dur-
ing early development the fetal brain undergoes dramatic struc-
tural changes and have established a spatiotemporal timetable
which characterises normal brain development (Chi et al., 1977;
Dorovini-Zis and Dolman, 1977). Specifically, the fetal brain sur-
face, or cortex, rapidly transitions from a relatively smooth agyric
surface in the early second trimester to progressively bearing more
indentations or folds (gyrification) over the course of pregnancy
until it resembles the adult brain at birth. Deviations from this pat-
tern have been indicative of cortical malformations as a result of
defective neuronal migration, as is the case of lissencephaly which
occurs when gyrification is reduced or stunted. Depending on
severity, cortical malformation may result in adverse outcomes
ranging from developmental delays and retardation to infant mor-
tality (Ghai et al., 2006). This, in turn, is suggestive of a direct link
between healthy gyrification and chronological age. These findings
raise the question whether changes in brain morphology could be
used as a robust indicator of GA and developmental normality in
clinical practice.

1.1. Related work

To date, several methods have been developed to automatically
map neuroanatomical structure from MR image data to neonatal or
adult age. Using voxel-based morphometry or shape analysis to
capture tissue growth (Good et al., 2001; Gholipour et al., 2012),
tensor analysis to characterize regional growth patterns
(Thompson et al., 2000), or discriminative classifiers to capture
characteristics of the developing or ageing brain (Franke et al.,
2012; Sabuncu and Van Leemput, 2012; Toews et al., 2012), a clear
link between anatomical changes and cerebral progression (or
regression) has been demonstrated. With the advent of image
preprocessing methods such as slice-to-volume reconstruction
and image mosaicing (Jiang et al., 2007; Rousseau et al., 2006),
and super-resolution techniques (Gholipour et al., 2010; Kim
et al., 2010; Rousseau et al., 2010), 3D MR images with high sig-
nal-to-noise ratio and improved spatial resolution are now avail-
able and have stimulated studies of fetal (Caldairou et al., 2011;
Gholipour et al., 2012; Habas et al., 2010; Habas et al., 2012;
Jacob et al., 2011; Rajagopalan et al., 2011; Scott et al., 2011;
Scott et al., 2013; Serag et al., 2012; Dittrich et al., 2014; Wright
et al., 2014) and neonatal (Kuklisova-Murgasova et al., 2011;
Serag et al., 2012) brain development from MR images. However,
these techniques are tailored for the challenges affecting MR
images and may not be appropriate for application in neurosonog-
raphy, which continues to be the modality of choice in routine
clinical care.

In the clinical literature, the age-related changes in echogeneity
of fetal brain structures have been well-described. The timing of
emergence of cortical sulci has been observed in US images and
described as following a predefined spatiotemporal timetable
(Bernard et al., 1988; Monteagudo and Timor-Tritsch, 1997; Toi
et al., 2004; Cohen-Sacher et al., 2006; Pistorius et al., 2010), in
agreement with MR and post-mortem neuroanatomical findings.
In particular, the process of cortical maturation observable in US
images of the fetal brain has been detailed by means of simple

subjective scoring techniques to define the appearance of sulci
and gyri beyond 20 gestational weeks (GW) (Quarello et al.,
2008; Pistorius et al., 2010).

Unlike MR images, US images are complicated by intensity arte-
facts such as signal attenuation, acoustic shadows, and occlusion
due to cranial calcification. US probe placement also generates
reverberation caused by multiple reflections of the US beam on
the fetal skull and other maternal tissues. These factors can affect
the visibility of key anatomical landmarks necessary for image
registration—the primordial step in image-based brain analysis.
However, given that cranial calcification and fusion progress with
GA (Malas and Sulak, 2000), the complex image patterns generated
by these artefacts may be used along with structural image
features to inform on developmental maturation.

Our work is the first to exploit age-related sonographic activity
to predict GA and hence neurodevelopmental maturation from US
images. We present bespoke appearance-based features designed
to capture these age-specific sonographic patterns and use them
to develop a model which automatically maps them to GA and
hence neurodevelopmental maturation. Learning-based
approaches are well-suited for this task due to their ability to take
high-dimensional data (i.e. longitudinal images producing 5000+
features representing image appearance at different ages) and
establish a compact representation of fetal brain development. In
the literature, relevance vector machines (RVM) (Franke et al.,
2010) and relevance voxel machines (RVoxM) (Sabuncu and Van
Leemput, 2012) have demonstrated the feasibility of learning a
mapping between image-based biomarkers and pathologies in
adult brains. More recently, Konukoglu et al. (2013) applied neigh-
bourhood approximation forests (NAF) to estimate adult age.
While the work of Konukoglu et al. (2013) also presents a forest-
based method for predicting age from brain images, their approach
relies on accurate alignment and registration of anatomical land-
marks, which remains a challenge in US images of the brain. Unlike
MR images, the appearance of anatomies in an US image varies
with the relative position of the brain with respect to the probe,
which results in acoustic shadows, occluded anatomical features,
and reverberation artifacts (Kuklisova-Murgasova et al., 2013).
Consequently, approaches requiring images of similar intensity
appearance and one-to-one inter-subject anatomical correspon-
dence are not, at present, directly applicable to a study of US
images of the brain; a local feature-based approach is more appro-
priate (e.g. Toews et al., 2010).

The advantages of employing decision forests for such tasks are
their built-in automatic feature selection, which allows for
identification of salient and age-discriminating image features,
and their generalizability to images from different age groups
and acquisitions. Thus, decision forests are appropriate for our
work in which we seek to identify the structures which are
informative for GA decision-making, and aim to apply the model
to images from patients at different developmental stages.

1.2. The proposed method

We propose a feature-based model for characterizing neuroana-
tomical appearance both spatially and temporally, capturing the
natural variation existing in a healthy fetal population over a
period of active brain maturation: 18+0 to 33+6 GW (weeks+days).
Specifically, we present an automated machine learning-based pre-
dictive model to learn the pattern of fetal brain changes through
dynamic features observable in multiple subject images and apply
it to demonstrate successful age estimation from a single unseen
scan. Our proposed model comprises of two steps: (i) 3D parametri-
zation of the fetal skull and (ii) feature extraction for learning age-
related sonographic patterns from 3D volumes, resulting in the
development of an age-predictive model. The model can then be
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