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For accurate estimation of the ensemble average diffusion propagator (EAP), traditional multi-shell diffu-
sion imaging (MSDI) approaches require acquisition of diffusion signals for a range of b-values. However,
this makes the acquisition time too long for several types of patients, making it difficult to use in a clinical
setting. In this work, we propose a new method for the reconstruction of diffusion signals in the entire
g-space from highly undersampled sets of MSDI data, thus reducing the scan time significantly. In partic-
ular, to sparsely represent the diffusion signal over multiple g-shells, we propose a novel extension to the
framework of spherical ridgelets by accurately modeling the monotonically decreasing radial component
of the diffusion signal. Further, we enforce the reconstructed signal to have smooth spatial regularity in
the brain, by minimizing the total variation (TV) norm. We combine these requirements into a novel cost
function and derive an optimal solution using the Alternating Directions Method of Multipliers (ADMM)
algorithm. We use a physical phantom data set with known fiber crossing angle of 45° to determine the
optimal number of measurements (gradient directions and b-values) needed for accurate signal recovery.
We compare our technique with a state-of-the-art sparse reconstruction method (i.e., the SHORE method
of Cheng et al. (2010)) in terms of angular error in estimating the crossing angle, incorrect number of
peaks detected, normalized mean squared error in signal recovery as well as error in estimating the
return-to-origin probability (RTOP). Finally, we also demonstrate the behavior of the proposed technique
on human in vivo data sets. Based on these experiments, we conclude that using the proposed algorithm,
at least 60 measurements (spread over three b-value shells) are needed for proper recovery of MSDI data
in the entire g-space.
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1. Introduction

Diffusion MRI (dMRI) is an imaging modality that is sensitive to
the neural architecture and connectivity of the brain. Conse-
quently, it is increasingly being used in clinical settings for inves-
tigating several brain disorders such as, Alzheimer’s disease,
stroke, schizophrenia and mild traumatic brain injury (Thomason
and Thompson, 2011; Shenton et al., 2012). Apart from more tradi-
tional Diffusion Tensor Imaging (DTI), it is nowadays standard to
use High Angular Resolution Diffusion Imaging (HARDI), which
involves acquiring diffusion signals at a single b-value (single
g-shell) in several gradient directions spread over the unit sphere
in a quasi-uniform manner (Tuch et al., 2003; Assemlal et al.,
2011). While this protocol allows for resolving the complex
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angular structure of the neural fibers, it does not provide informa-
tion about the radial signal decay, which is known to be sensitive
to various anomalies of white matter (Cohen and Assaf, 2002).

To obtain accurate information about the neural architecture,
diffusion spectrum imaging (DSI) was proposed by Wedeen et al.
(2005). This dMRI technique involves acquiring multiple measure-
ments over a Cartesian grid of points in the g-space, followed by
application of discrete Fourier transform to obtain an estimate of
the ensemble average propagator (EAP). Unfortunately, a large
number of measurements required by DSI makes it impractical to
use in clinical settings. Accordingly, to speed-up the acquisition
of dMRI (and DSI) data, two complementary approaches have been
proposed, namely: (i) the use of compressed sensing (CS) to reduce
the number of measurements (Candeés et al., 2006; Donoho, 2006),
and (ii) the use of multi-slice acquisition sequences for faster data
acquisition (Setsompop et al.,, 2011; Feinberg et al., 2010). This
work focuses on methodology (i), i.e., CS-based reconstruction of
diffusion signal from critically undersampled measurements.
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Several imaging and analysis schemes, which use fewer mea-
surements than traditional DSI, have recently been proposed in
the literature (Wu and Alexander, 2007; Jensen et al., 2005;
Assemlal et al., 2011; Merlet et al., 2012; Barmpoutis et al., 2008;
Descoteaux et al., 2010; Zhang et al., 2012; Ye et al,, 2011; Ye
et al., 2012; Hosseinbor et al., 2013). Each of these techniques cap-
tures a different aspect of the underlying tissue organization,
which is missed by HARDI. Traditional methods of EAP estimation
that account for the non-monoexponential (radial) decay of diffu-
sion signals, require a relatively large number of measurements
at high b-values (greater than 3000 s/mm?) (Assaf et al., 2004;
Mulkern et al., 2001). Consequently, their associated scan times
are deemed to be too long for non-cooperative patients, which is
the main motivation for reducing the number of measurements
in dMRI scans.

Although not new in application to MRI, CS-based methods of
signal reconstruction has gained significant attention in the
diffusion imaging community over the last few years. Several
works have proposed CS-based algorithms for recovering HARDI,
MSDI as well as DSI data from undersampled (aka incomplete)
measurements (Ye et al.,, 2011; Merlet et al., 2012; Landman
et al, 2012; Gramfort et al., 2012; Duarte-Carvajalino et al.,
2012; Freiman et al., 2013; Scherrer et al., 2013; Assemlal et al.,
2011; Michailovich et al., 2011; Rathi et al., 2011). To this end, var-
ious types of signal representation bases have also been proposed,
each having different sparsifying properties. For example, for
HARDI data, spherical ridgelets were proposed in Michailovich
et al. (2008), Michailovich and Rathi (2010), and for MSDI data,
spherical polar Fourier (SPF) and its variants (SHORE) were pro-
posed in (Assemlal et al., 2008; Ozarslan et al., 2008; Cheng
et al,, 2010; Merlet et al., 2012). In the case of the SHORE basis,
to optimize the accuracy of signal reconstruction, one has to
choose an appropriate scaling parameter, which could potentially
be different for different types of tissue. To address this issue,
(Merlet et al., 2012) used a dictionary learning technique to learn
the scaling parameter and the appropriate polynomial to represent
the radial decay term. On the other hand, in Ozarslan et al. (2013),
this scaling parameter was adaptively obtained in a data driven
fashion by computing the eigenvalues of a tensor at each voxel.
However, at a fundamental level, both these methods extend the
original SHORE basis to sparsely represent the diffusion data. In
this work, we will compare our technique with the SHORE-based
reconstruction (Cheng et al., 2010; Merlet and Deriche, 2013),
where sparsity is enforced through the standard [;-norm minimi-
zation. In our earlier work (Rathi et al., 2011), we had also pro-
posed a basis that combined the spherical ridglets with a radial
term. However, the cost function used in that work was non-con-
vex, making it quite susceptible to local minima. In this work, we
propose significant modifications and address the limitations of
our earlier work, as discussed in the next section.

2. Our contributions

The framework of spherical ridgelets (SR) proposed in
Michailovich et al. (2011) was used to recover HARDI data on a sin-
gle b-value shell from highly undersampled set of diffusion mea-
surements. In this work, we propose a novel extension of this
basis for recovering multi-shell diffusion data. Towards this end,
we incorporate a novel radial decay term which is a monotonically
decreasing function with its range bounded between 0 and 1. This
property is quite desirable, since it is known that the values of nor-
malized diffusion signals lie within this range (Clark and Le Bihan,
2000; Schwarcz et al., 2004; Mulkern et al., 2009). In this work, we
use spherical ridgelets to perform CS-based reconstruction of MSDI
signals over each of their associated b-value shells (g-shells), while

using the radial decay term for representing the signal attenuation
with increasing b-values. To obtain an optimal consensus solution
that ensures spatially smooth signal recovery, we propose a novel
computational framework based on the ADMM algorithm. We per-
form extensive testing of the proposed algorithm on a physical
phantom data set and compare it with the SHORE-based method.
We provide quantitative results in terms of the error in estimation
of the orientation, incorrect number of peaks detected, normalized
mean squared error (NMSE) in the estimation of the signal as well
as NMSE in the estimation of the return-to-origin probability
(RTOP). We also provide similar quantitative results on human
in vivo data set.

The primary aim of the algorithm presented in this work is
the recovery of diffusion signal from sub-critically sampled mea-
surements. Following this, any model or methodology (such as,
multi-compartment models, kurtosis, diffusion propagator and
free-water) can be used to compute diffusion measures or features
(Ozarslan et al., 2013). Thus, in this work, we do not focus on recov-
ering model specific diffusion properties as they can be computed
once an estimate of the diffusion signal in the entire g-space is
available using the proposed method.

3. Background
3.1. Diffusion MRI

Under the narrow pulse assumption, the diffusion signal S(q) in
the g-space is related to the EAP P(r) via the Fourier transform as
given by Stejskal and Tanner (1965)

P(r) = E(q) exp(—i27q - r)dq,

rer?

where E(q) £ 5(q)/S(0) : R* — [0, 1] is the normalized diffusion sig-
nal, with S(q) and S(0) being the measured diffusion signal and its
corresponding b = 0 value, respectively. Alternatively, E can be
written as a function of b-value and a unit vector u € S, such that
E(b,u) : R* x S — [0,1], where b = y25*(A — §/3)|/g||* s/mm?, with
6 being the duration of the gradient pulse, A is the mixing time
(i.e., the time between the two diffusion-encoding gradients), y is
the gyromagnetic constant, and ||g|| denotes the Euclidean norm
of the diffusion-encoding gradient g. In the context of MSD], the sig-
nal E is measured along N discrete orientations {u}}_, for several
different values of b. Thus, for each b value shell, the sampling
points are spread over the unit sphere, thereby giving the measure-
ments a multi-shell structure.

3.2. Compressed sensing

The theory of CS provides the mathematical foundation for
accurate recovery of signals from their discrete measurements
acquired at sub-critical (aka sub-Nyquist) rate (Candés et al.,
2006; Donoho, 2006; Candes et al., 2011). The theory relies on
two key concepts: sparsity and incoherence, although the latter
requirement could be relaxed in certain cases (Candes et al.,
2011). Sparsity implies that the signal of interest should have a
sparse representation in some basis/frame ¥ € RV, which we
term as the representation dictionary. The signal E € RN is said
to admit a sparse representation in ¥ if its expansion coefficients
contain only a small number of significant coefficients, i.e. if
E = ¥c, then most of the elements of ¢ € RM are zero. If only K ele-
ments of ¢ are nonzero, then the signal E is said to be K-sparse in ¥,
where K < M.

The framework of CS also relies on a sensing or sampling basis
&. In the context of diffusion MRI, since we have a single value E(q)
associated to each point q in the g-space, we assume that the
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